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Chapter 1

Languages, Structures, and
Completeness

1.1 Languages

In natural language, we have a collection of symbols and rules to manip-
ulate the symbols in order to communicate. The process of mathematical
formalization begins with the notion of a logic L, which dictates the nature
of the information that can be presented. The prime object of our discussion
will be the first-order logic Lωω, which essentially puts some limits on what
we can write.1 A formal language L consists of logical constants and non
logical symbols- constants and variables, that can be plugged into the ‘tem-
plates’ provided in the logic to convey information. A language establishes
the smallest collection of ‘labels’ needed to sufficiently describe a mathe-
matical structure. Like words in natural languages, labels don’t have any
interpretation until we associate them with one.

Logical constants of interest to us will be elements in the set {=,∧,∨,¬,∀,∃}
where the symbols carry their usual meaning. These are symbols whose se-
mantic value does not change with interpretation of the language.[11] For
convenience, we define some special combinations of the logical constants
which occur frequently:

(a→ b) := (¬a) ∨ b
(a↔ b) := (a→ b) ∧ (b→ a)

1See Section 2.2 for a detailed discussion.

2



Remark. Observe that the logical constants we mentioned are related to
each other as

(a ∨ b)⇔ ¬(¬a ∧ ¬b),
∃a b⇔ ¬(∀a ¬b).

Hence, for the purposes of this text we will only prove results about one
of the two logical connectives {∨,∧} and one of the two existential quan-
tifiers {∃,∀} and the result will be true for the others as long as closure
under negation holds. However, the distinction becomes necessary later, for
instance when dealing with “statements with universal quantification”.

Non logical variables are symbols v0, v1, v2, ... which are manipulated without
referring to their actual value. We sometimes use x, y, z, ... for variables.

Definition 1.1.[12] The signature or the vocabulary is the set σ of non logical
constant symbols of the language along with their descriptions. It is a union
of

(i) σR, the set of relation- symbols, along with a function σR → N which
associates each R ∈ σR to some natural number called its arity.

(ii) σF , the set of function-symbols, along with a function σF → N which
associates each f ∈ σF to its arity.

(iii) σC , the set of constant-symbols.

Remark. Based on different conventions, equality ‘=’ can be classified as
both a logical constant, and a binary relation symbol. For conciseness of
definitions coming up, we shall assume = ∈ σR for all languages σ and has
arity 2, and shall not state it explicitly when writing the signatures.

Every time we mention a language L it is implied that we are dealing with
both, a signature and an underlying logic. We write L(σ) for the language
formed from the logic L and the signature σ.

Example 1.2. If we want to talk about groups, we will need one function-
symbol · of arity 2 (binary) to label the group operation and one constant-
symbol e to label the group identity. Thus σg = {·, e} suffices as a signature
for groups. Write Lg for the first-order language of groups Lωω(σg).

Example 1.3. σexp = {<,+,×, exp, 0, 1} is a signature that lets us de-
scribe the ordered set of real numbers under exponentiation, where < is a
binary relation-symbol, + and × are binary function-symbols and 0 and 1
are constant-symbols. Write Lexp for the first-order language Lωω(σexp)
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Just like words can be formed from certain combinations of the letters of the
alphabet, a term is a sequence of symbols which can actually have a mean-
ingful interpretation. For example, +(0, exp(1)) and exp(+(×(y, 0), x)) are
Lexp-terms (written more conveniently as 0 + exp(1) and exp((y × 0) + x)
respectively.)

Definition 1.4.[12] For a language L, the set of L-terms is defined as the
smallest set Term(L) such that

(i) variables v0, v1, v2, ... ∈ Term(L)

(ii) The set of constant L-symbols LC ⊂ Term(L)

(iii) if f is an n-ary function L-symbol and t1, t2, ... , tn ∈ Term(L) then
f(t1, t2, ... , tn) ∈ Term(L)

In a natural language, words allow us to make assertions. In this context, as-
sertions will involve stating how terms are related. This is achieved by means
of formulae. φ is an atomic formula if φ is R(t1, t2, ... , tn) where the relation-
symbol R is n-ary. Call the set of atomic L-formulae Atom(L). These form
the ‘building blocks’ of all formulae. For example, φ : (0 < exp(x+ y)) and
ψ : (1 = 0) are elements of Atom(Lexp).

Definition 1.5.[12] The set of well-formed formulae of a language L is the
smallest set Form(L) such that

(i) The set of atomic L-formulae Atom(L) ⊂ Form(L)

(ii) ¬φ ∈ Form(L) whenever φ ∈ Form(L)

(iii) φ ∧ ψ ∈ Form(L) whenever φ and ψ ∈ Form(L)

(iv) ∀x φ ∈ Form(L) whenever φ ∈ Form(L)

i.e. the set of well formed formulae is the smallest set containing all atomic
formulae that is closed under negation, conjunction and quantification. Ob-
serve that the set automatically becomes closed under ∨ and ∃. For example,
∃x (y < x) ∧ (y < 1) ∈ Form(Lexp). Note that the formulae are simply as-
sertions with no truth value associated- for in fact 1 and < are simply labels
without any interpretation as of now.

Definition 1.4 and Definition 1.5 are inductive: any set containing all L-
constants and variables and satisfying property (iii) must coincide with
Term(L), and likewise for Form(L). This is useful when proving results
about terms and formulae. We look at another inductive definition which
will be useful:
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Definition 1.6.[12] For a languate L, the quantifier depth2 of an L-formula
φ is depth(φ) such that

(i) depth(φ) = 0 if φ is an atomic L-formula

(ii) depth(¬φ) = depth(φ)

(iii) depth
∧

Φ = max{depth(φ) : φ ∈ Φ}

(iv) depth(∀xφ(x)) = depth(φ) + 1

We look at a useful result:

Lemma 1.7.[12] For a finite vocabulary, for each n and l, there are only
finitely many formulas in l variables of depth at most n, up to equivalence.

Proof. We first show this for depth 0:
Since the vocabulary is finite with finitely many variables, we can only have
finitely many atomic formulae {ψ0, ψ1, ψ2, ..., ψk}. If φ is a boolean combi-
nation of these, then there is K a collection of subsets of {0, 1, ..., k} such
that

φ↔
∨
X∈K

(
∧
i∈X

ψi ∧
∧
i/∈X

¬ψi)

so we can have at most 22
k

depth 0 formulae.
Formulae of depth n + 1 are simply boolean combinations of formulae of
form ∀xφ where depth(φ) ≤ n so result follows by induction.

A free variable is a variable not bound by any quantifier. A variable that
isn’t free is a bound variable. If x, y, ... , z are the free variables occuring in
a formula φ, then we write φ(x, y, ... , z); likewise for terms. It can be said
that φ makes assertions about whatever is assigned to the variable-symbols
x, y, .... , z.3

A sentence is a formula with no free variables. Sentences are assertions
about the entire universe. Examples of Lexp-sentences are ∃x ¬(x = 0) (in-
tended to mean ‘there is some non-zero element’ upon proper interpreta-
tion) and ∀x (1 < x) ∧ (x < 0) (intended to mean ‘every element is greater
than 1 and smaller than 0’ upon proper interpretation.) A theory is a set
of sentences.

2also called quantifier rank
3See [12] for a more detailed discussion.
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Example 1.8.

{∀x ∃y exp(y) = x,

∀x ∀y exp(x) < exp(y)↔ x < y,

exp(0) = 1 }

is an Lexp-theory.

We have thus established a framework to express mathematical ideas which
compares well with intuitive ideas behind natural languages. However, the
very first definition- that of logical constants is one that has been subject
matter for philosophical debate over many years, for, in the words of one of
the founding fathers of model theory Alfred Tarski himself,

No objective grounds are known to me which permit us to draw a
sharp boundary between [logical and non-logical expressions].[6]

We shall however brush these issues aside since they will not affect our study
significantly.

1.2 Structures

Now that we have established a language, we would want to assign meaning
to the symbols- the function-symbols should label some actual functions, the
relation-symbols should label some actual relations. We do this by means
of an operation θ 7→ θM which tells us how to interpret a symbol in the
signature σ as some object in a mathematical structure M.

Definition 1.9.[12] A structure M is a realization of the language L = L(σ)
if it has

(i) a set M , called the universe of M,

(ii) a function fM : Mn →M for each n-ary function- symbol f ∈ σ,

(iii) a relation RM ⊂Mn for each n-ary relation-symbol R ∈ σ,

(iv) an element cM ∈M for each constant-symbol c ∈ σ.

We write the structure as a tuple4 M = (M,fM, ... , RM, ... , cM, ...) and
call it an L-structure.

4Not necessarily finite
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Example 1.10. N = (N,+, 5) is an Lg-structure, where ·N = + and eN = 5
Note that this is not a group, however all that matters is that every symbol
in the language has an assigned meaning- the Lg-term t(x) = ·(x, e) is
interpreted as tN (x) = x + 5, and the Lg- sentence φ given by ·(e, e) = e
corresponds to φN : 5 + 5 = 5.

This also gives us a nice interpretation of terms: they can be viewed as func-
tions taking in tuples from the universe corresponding to free variables and
producing a single element as output. So in the above example, tN is a func-
tion N→ N given by x 7→ x+5. Formulae, on the other hand, take in tuples
from the universe and output true or false based on whether the formula
holds for the tuple. For instance the Lg formula φ(x) : (x · e) · e = (x · x) · e
corresponds to φN (x) which asks if (x+ 5) + 5 = (x+x) + 5. Clearly, φN (5)
is true while φN (2) is not.

We need some notion of truth of formulae in structures. We say an L-
structureM satisfies or models an L-formula φ(x̄) for an n-tuple ā ∈Mn if
φM(ā) is true inM, and writeM � φ(ā). The formal definition is inductive
on Form(L):

Definition 1.11.[12] For a signature L, an L-structure M = (M, ...) and
an L-formula φ(x̄),

(i) If φ(x̄) is an atomic L-formula, then φ is of the form R(x̄) for some
n-ary relation-symbol R ∈ L. For ā ∈Mn writeM � φ(ā) iff ā ∈ RM.

(ii) If φ is ¬ψ then M � φ iff M 2 ψ.

(iii) If φ is ψ ∧ θ then M � φ iff M � ψ and M � θ.

(iv) If φ(x̄) is ∀y ψ(x̄, y) then M � φ(ā) iff M � ψ(ā, b) whenever b ∈M .

The cases for ∨ and ∃ follow from these base cases so are not stated sepa-
rately.

The notion of a structure satisfying a theory follows immediately: an L-
structure M satisfies an L-theory T if M � φ whenever φ ∈ T . We say M
is a model of T , written M � T . A theory is said to be satisfiable if it has
atleast one model.

A class of L-structures K is an elementary class if there is an L-theory
T such that K = {M :M � T}.
T is called the set of axioms of K and we say T axiomatizes K.
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Example 1.12. Consider the Lg-theory Tg given by

Tg = {∀x, e · x = x

∀x ∃y, x · y = e

∀x ∀y ∀z, x · (y · z) = (x · y) · z }.

This theory is satisfiable- Z = (Z,+, 0) models it when ·Z = +, eZ = 0. In
fact, any group is a model of this theory- the class of groups is an elementary
class axiomatized by Tg. If we look at Ta.g. = Tg ∪{∀x ∀y, x · y = y ·x}, this
precisely axiomatizes the elementary class of abelian groups. One can check
that Z � Ta.g..

Example 1.13. Define σr = {+, ·, 0, 1}, and Lr = Lωω(σ) the language of
rings. Then the Lr theory

Tr = { ∀x, x+ 0 = x,

∀x ∃y, x+ y = 0,

∀x ∀y ∀z, (x+ y) + z = x+ (y + z),

∀x, x · 1 = x,

∀x ∀y ∀z, (x · y) · z = x · (y · z),
∀x ∀y ∀z, (x+ y) · z = x · z + y · z,
∀x ∀y ∀z, x · (y + z) = x · y + x · z }

axiomatizes the elementary class of rings. Tc.r. = Tr ∪ {∀x ∀y, x · y = y · x}
gives the axioms of commutative rings, while Tf = Tc.r. ∪ {∀x ∃y, x = 0 ∨ x · y = 1}
forms the set of field axioms. Can we axiomatize finite fields using first or-
der logic? 5

Observe we have used the same language Lr of rings to write theories for
structures that are much richer. We could, for instance, encode all of these
using a different signature σf = σr ∪ {−} (and Lf = Lωω(σf ) where − is
a unary operation-symbol to be interpreted as additive inverse. This the-
ory would allow us to axiomatize fields using one less sentence (existence
of additive inverse would be trivially true.) However, from a strictly model
theoretic perspective, fields as Lf -structures are different from fields as Lr-
structures. Can we define fields as Lf∗-structures where Lf∗ is formed by
adding to the signature of Lf a unary operation-symbol −1 to be interpreted
as multiplicative inverse?

5See Corollary 1.17 and then try answering this question.
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Definition 1.14.[9] For a language L, the full theory of an L-structure M
is the set Th(M) of all L-sentences satisfied by M.

For a language L = L(σ), given a model M and m̄ the string of all the
elements in M , we create a new signature σM = σ ∪ {c : cM ∈ M}, i.e.
by adding constant-symbols for every element in M . Then for the language
LM = L(σM), (M, m̄) is an LM-structure by interpreting the constant-
symbols with m̄. We do this so that if φ(x̄) is an L-formula and ā ∈ M,
then φ(ā) can now be seen as an LM-sentence. This allows us more freedom
in the sets we can define.

The atomic diagram of M is the set of all quantifier-free LM-sentences
satisfied by (M, m̄). Quantifier-free LM-sentences correspond to atomic
L-formulae, or negations thereof.

Diag(M) = {φ(ā) : φ(x̄) or ¬φ(x̄) ∈ Atom(L), ā ∈Mn, M � φ(ā)}

The elementary diagram of M is the set of all LM-sentences satisfied by
(M, m̄).

Diagel(M) = {φ(ā) : φ(x̄) ∈ Form(L), ā ∈Mn, M � φ(ā)} = Th(M, m̄)

Needless to say, M � Th(M), M � Diag(M), and M � Diagel(M).

1.3 Completeness

In the first two sections, we discussed separately the notions of syntax and
semantics. One of the greatest achievement of mathematical logic is the
unification of the two.

A proof of an L-formula φ from an L-theory T is a finite sequence of L-
formulae (ψ0, ψ1, ..., ψn) such that ψn = φ and for each i ∈ {0, 1, ..., n}, either
ψi ∈ T or ψi follows from {ψ0, ψ1, ..., ψi−1} using rules of simple inference
(for example q follows from {p → q, p}, and u follows from {u ∧ v}). We
write T ` φ if there is a proof of φ from T .[12]

An L-theory T is complete if for any L-sentence φ, exactly one of T ` φ
or T ` ¬φ is true. Observe that the full theory of any L-structure M is
complete, hence is also called the complete theory of M.

An L-theory T is inconsistent if there exists an L-sentence φ such that
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T ` (φ ∧ ¬φ). Otherwise, the theory is consistent. A consistent theory
does not prove any contradiction. This idea becomes very powerful when
combined with the idea that our proof system is sound (see Theorem 1.15),
and is what our proof system relies on.

All of the above are completely syntactic notions. We move on to dis-
cuss the semantic notion of logical consequence: An L-sentence φ is a logical
consequence of an L-theory T if for any L-structure M, M � φ whenever
M � T . We write T � φ.

Theorem 1.15.[9] (Soundness) For a first-order6 language L, for any
L-theory T and L-sentence φ, T � φ whenever T ` φ.

Proof. (Sketch) We proceed by induction on the length n of the proof of φ. If
n = 1 then φ ∈ T so T � φ. If we assume the theorem holds till n, then for φ
having proof of length n+ 1 say (ψ0, ψ1, ..., ψn), we must have ψn following
from {ψ0, ψ1, ..., ψn−1} using simple rules of inference. For example if ψn
follows from {ψj = (ψi → ψn), ψi} then ψi and ψj have proofs of lengths
i+ 1 < n and j + 1 < n respectively, so by induction hypothesis T � ψi and
T � ψj . But from definition of �, T � ψi → ψn iff T � ψn or T 2 ψi. Hence
we must have T � ψn, i.e. T � φ.
We similarly consider other rules of inference to complete the proof.

In other words, every satisfiable theory is consistent. This tells us that
our proof system is sound, i.e. we cannot prove something that is not a
logical consequence. However, can we prove everything that is a logical
consequence? This was shown in one of the most remarkable results about
logic, proven by Kurt Gödel in 1929 who reduced the problem to deal only
with special syntactic forms using an ad-hoc argument. The result was later
proven by Leon Henkin in 1949 by direct construction of a model (see [10]
for details of the proof.) We state the theorem:

Theorem 1.16.[10] (Gödel’s Completeness Theorem) For a first-order
language L, for any L-theory T and L-sentence φ, T ` φ whenever T � φ.

This says every consistent theory is satisfiable. Coupled with soundness, it
formally establishes the equivalence of the semantic notion of logical conse-
quence and the finitist syntactic notion of proof.

A keen observer might have noticed that we proved Theorem 1.15 to show

6See Section 2.2.
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that it is semantically true in our model of mathematics. Does this mean
that before writing the proof, we had no idea that the proof would actu-
ally mean the theorem is true? Since the theorem itself connects syntactic
proofs and logical consequences, have we in some sense done both- proving
the statement and also showing that the proof is actually meaningful- in
the same text? No. A language cannot prove results about itself. To avoid
running into such self-referential situations, it is important that we make
a clear distinction between the object language: the language about which
we are proving results, and the meta-language: the language which we are
using to prove the result. The two don’t need to be related to each other
at all, and we generally assume that the meta-language is well behaved, so
that we don’t have to worry about its consistency.

An L-theory T is finitely satisfiable if every finite subset of T is satisfi-
able. It is trivially true that every satisfiable theory is finitely satisfiable,
since T � ∆ for every ∆ ⊆ T . The converse, however, is non-trivial and
forms the cornerstone of model theory:

Corollary 1.17.[12](Compactness Theorem) For a first-order language
L, an L-theory is satisfiable if and only if it is finitely satisfiable.

Proof. Any satisfiable theory is clearly finitely satisfiable. To show the con-
verse, let L-theory T be finitely satisfiable. If T is not satisfiable, then by
Theorem 1.16, T is inconsistent i.e. T ` (φ ∧ ¬φ) for some L-sentence φ.
Let σ be a proof of (φ∧¬φ) from T . Since proofs are finite, σ uses sentences
from some finite subset ∆ ⊆ T , hence ∆ ` (φ ∧ ¬φ). But then ∆ is an
inconsistent, hence unsatisfiable finite subset of T , a contradiction.

Perhaps at this point you are worried the proof of Corollary 1.17 relies on
Theorem 1.16, the proof of which we have not stated. Since this result is so
important, we shall present a more self-contained proof in Section 3.4.2.

We look at some interesting consequences of the theorem:

Example 1.18. Any L-theory T with arbitrarily large finite models has an
infinite model. To show this, consider the sentence

ψn : ∃x0 ∃x1, ...∃xn−1, ¬(x0 = x1) ∧ ¬(x0 = x2) ∧ ... ∧ ¬(xn−2 = xn−1)

for n ∈ N. This sentence asserts there are atleast n distinct elements. For any
finite subset {n0, n1, ..., nk} ⊂ N, we have a model of T ∪ {ψn0 , ψn1 , ..., ψnk

}
by choosing an appropriately large model of T . Then T ∪ {ψn : n ∈ N} is
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finitely satisfiable (since T is finitely satisfiable), and thus by compactness
theorem there is an L-structure M � T ∪ {ψn : n ∈ N} ⇒ M � T , but M
must be infinite. For instance, this tells us there cannot be any first-order
theory of finite sets (or groups) i.e. a theory that is satisfied iff the set (or
group) is finite.

Example 1.19. The signature required to describe graphs σgr = {R} has a
single binary relation-symbol, to be interpreted as a non-reflexive symmetric
relation. Suppose the first-order language of graphs Lgr = Lωω(σgr) allowed
us to write a theory T which would axiomatize all cyclic graphs, i.e. M � T
if and only if M is a cyclic graph. Then for the Lgr-sentence

φn : ∃x0 ∃x1, ...,∃xn,
n−2∧
i=0

xiRxi+1,

the theory T ∗ = T ∪ {φn : n ∈ N} is finitely satisfied by choosing an
appropriately large cyclic graph. Hence by Corollary 1.17, it is satisfiable,
but any model of T ∗ must contain an infinite chain (and hence be acyclic).
Thus an acyclic graph satisfies T , a contradiction and cyclicity is not a
first-order definable property.
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Chapter 2

Embeddings and Lindström’s
Classification of First-Order
Logic

2.1 Embeddings

How are various structures related to each other? There can be various
ways to classify a structure as being the ‘same’ as, or ‘contained’ within
some other structure. The notion of a ‘homomorphism’ occurs frequently in
mathematics- maps which preserve some kind of structure. We generalize
the notion of a homomorphism to structures.

For a language L, a map θ : M → N is an L-homomorphism if it is a
map M → N that preserves the interpretation of all symbols in L:[9]

(i) For all n-ary f ∈ LF and ā ∈Mn, θ(fM(ā)) = fN (θ(ā)),

(ii) For all n-ary R ∈ LR and ā ∈Mn, ā ∈ RM iff θ(ā) ∈ RN ,

(iii) For all c ∈ LC , θ(cM) = cN .

An injective L-homomorphism is an L-embedding. If there is an L-embedding
M → N , we say M is a substructure of N , and N is an extension of M,
written M⊆ N .

Note that the Lg-substructure of a group is not necessarily a subgroup1-

1However for L∗g = Lg ∪ {−1}, the L∗g-substructures of groups are indeed subgroups if
we interpret the unary function-symbol −1 with taking the inverse.
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for example, (N0,+, 0) ⊆ (Z,+, 0). This is because embeddings say nothing
about satisfaction of theories. We need stronger notions of containment for
that.

We say an embedding θ :M→N is an elementary embedding ifM � φ(ā)⇔ N � φ(θ(ā))
for all φ ∈ Form(M), ā ∈M . If such an elementary embedding exists from
M to N exists then we say M is an elementary substructure of N , and N
is an elementary extension of M; written M 4 N . While extensions just
add more elements to the structure, elementary extensions do this while
preserving all first order properties. The following proposition makes this
clear:

Theorem 2.1.[12] For a language L and L-structures M and N , the fol-
lowing are true:

(i) N � Diag(M)⇔M⊆ N

(ii) N � Diagel(M)⇔M 4 N

Proof. Consider N as an LM-structure.

(i) If N � Diag(M) then consider θ : M → N given by θ(m) = mN .
θ is an injection: If m1 6= m2 then ¬(m1 = m2) is in Diag(M) so
N � ¬(m1 = m2), and so θ(m1) 6= θ(m2).

If f ∈ LF and m̄ ∈ M such that f(m̄) = n then (f(m̄) = n) is
in Diag(M) so f(θ(m)) = θ(n). Likewise for relation-symbols and
constant-symbols

Thus θ is an L-embedding so M⊆ N .

Conversely, ifM⊆ N with the embedding given by θ and φ ∈ Atom(M),
then for m̄ ∈ m we have

For variable-symbol x, θ(xM) = xN .

For constant-symbol c, θ(cM) = cN .

For t̄ a sequence in Term(L) and f ∈ LF , we have

θ(fM(t̄M)) = fN (θ(t̄M)) = fN (t̄ N )

since θ is an L-embedding. Thus we have shown by induction that
for t ∈ Term(L), θ(tM) = tN .
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If φ ∈ Atom(L) then φ(x̄) is R(t̄) for R ∈ LR and t̄(x̄) ∈ Term(L).
Then

M � φ(m̄)⇔ t̄M(m̄M) ∈ RM

⇔ θ(t̄M(m̄ m)) ∈ RN

⇔ t̄ N (m̄N ) ∈ RN

⇔ N � φ(m̄)

and so N � Diag(M).

(ii) If N � Diagel(M) then θ above is an elementary embedding. Con-
versely, if M 4 N with the elementary embedding given by θ then
from above, (N) � Diag(M), but θ being elementary can be used to
show closure under ∀,¬ and ∧ so N � Diagel(M).

Part (i) says quantifier free formulae are preserved under superstructure.
(Preservation under substructure is trivially true.)
We now look at an important criterion for determining elementary contain-
ment:

Theorem 2.2.[12] (Tarski-Vaught Test) For a language L, and L-structures
M and N such that M ⊆ N , we have M 4 N if and only if for any
φ(x) ∈ Diagel(M), we have N � ∃xφ(x)⇒ ∃m ∈M, N � φ(m).

Proof. IfM 4 N thenN � ∃xφ(x)⇒M � ∃xφ(x)⇒ ∃m ∈M, M � φ(m)
and hence N � φ(m). Conversely, if for any φ(x) ∈ Diagel(M), we have
N � ∃xφ(x)⇒ ∃m ∈M, N � φ(m), then

if φ(ā) is quantifier free then M � φ(ā)⇔ N � φ(ā)

M � ¬φ ⇔M 2 φ⇔ N 2 φ⇔ N � ¬φ

M � φ ∧ ψ ⇔ M � φ andM � ψ ⇔ N � φ andN � ψ ⇔ N � φ ∧ ψ

if M � ∃xφ(x) then there is m ∈M such that M � φ(m) so N � φ(m)⇒
N � ∃xφ(x).

Conversely if N � ∃xφ(x) then by hypothesis, ∃m ∈M, N � φ(m)⇒M �
∃xφ(x). Hence by induction on Form(L) we have shown N � Diagel(M),
in other words M 4 N .
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For φ(x) ∈ Form(L), we say n ∈ N witnesses the existential statement
∃xφ(x) if N � ∃xφ(x) ⇒ N � φ(n). The Tarski-Vaught test says that any
substructureM⊆ N is elementary if and only if whenever there is an exis-
tential statement parameterized only by elements of M that is satisfied by
N , it must be witnessed by an element in M.

A direct generalization of the notion of a bijective homomorphism i.e. an
isomorphism arises: A bijective L-homomorphism is an L-isomorphism. We
write M∼= N if there is an L-isomorphism between M and N .

A similar notion is that of elementary equivalence: Two L structuresM and
N are elementarily equivalent if Th(M) = Th(N ), i.e. for all L-sentences
φ, M � φ⇔ N � φ. We write M≡ N . Observe that M 4 N ⇒M ≡ N .

Two structures are elementarily equivalent if they are indistinguishable by
means of the first-order language L. This is weaker than isomorphism:

Theorem 2.3.[12] If θ :M→N is an isomorphism then M≡ N .

Proof. θ is an L-embedding so from proof of Theorem 2.1 we know that for
t ∈ Term(L), θ(tM) = tN .

If an L-formula φ is R(t̄) for R ∈ LR, then we have

M � φ⇔ t̄M ∈ RM ⇔ θ(t̄M) ∈ θ(RM)⇔ t̄N ∈ RN ⇔ N � φ.

If φ is ¬ψ for an L-formula ψ then

M � φ⇔M 2 ψ ⇔ N 2 ψ ⇔ N � φ.

If φ is ψ ∧ η then

M � φ⇔M 2 ψ andM 2 η ⇔ N 2 ψ and N 2 η ⇔ N � φ.

If φ is ∃xψ(x) then

M � φ⇔M � ψ(m) for some m ∈M
⇔ N � ψ(n) for some n ∈ N since θ surjective

⇔ N � φ

Hence by induction on Form(L), we have shown that M � φ ⇔ N � φ for
all L-sentences φ, i.e. M≡ N .

Theorem 2.3 says that Th(M) is an isomorphism-invariant.
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2.1.1 Theorems of Löwenheim and Skolem

Is it possible to produce more models of a theory from existing ones? Turns
out it is:

If M is an L-structure and S is a set of elements from M , then the hull
of S, written 〈S〉 is the smallest substructure of M containing S.

Lemma 2.4.[10] If M is an L-structure and S is a set of elements in M
then |〈S〉| ≤ |S|+ |L|+ ℵ0

Proof. We define the set Si inductively for i < ω:

S0 = S ∪ {cM : c ∈ LC}
Si+1 = Si ∪ {fM(ā) : f ∈ LF , ā ∈ Sni }

Set Sω =
⋃
i<ω

Si which is a subset of M . Then S = (Sω, ...) is an L-structure

by interpreting cS = cM ∈ Sω and relation-symbols and function-symbols
as relations and functions of M over the restricted domain Sω. Moreover,
S is a substructure of M, and from construction,

|〈S〉| ≤ |Sω| ≤ |S|+ |L|+ ℵ0.

Two important results by Thoralf Skolem and Leopold Löwenheim give a
method to build elementary substructures and superstructures of any car-
dinality from an infinite model of a theory. Ironically, Skolem studied these
because he disliked the idea of uncountable structures, and aimed to show
“every countable theory which is satisfiable has a countable model”. We
prove a generalized version of the statement:

Theorem 2.5. (Downward Löwenheim-Skolem Theorem)2 For a first-
order language L, if an L-theory T has an infinite model M and κ is an
infinite cardinal such that |L| ≤ κ ≤ |M| then T has a model with cardinality
κ.

2[10] proves this result using Henkin’s ideas, but also sketches a shorter, more straight-
forward proof. For the purposes of this text it suffices to use the latter, the details of
which have been filled in.
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Proof. Consider any collection S of size κ of elements of M. Define Si
inductively for i < ω:

S0 = 〈S〉
Si+1 = 〈 Si ∪ {m ∈M : forφ(x) ∈ Diagel(Si), M � ∃xφ(x)⇒M � φ(m)} 〉

i.e. every existential statement in terms of Si satisfied by M is witnessed
by some element in Si+1. This gives us a chain S0 ⊆ S1 ⊆ S2 ⊆ ... ⊆ M
of substructures. Let S =

⋃
i<ω

Si so that S ⊆ M. Now by construction,

S satisfies the Tarski-Vaught test and hence from Theorem 2.2, S 4 M.
Moreover, |S| ≤ |S| ≤ |L|+ |S|+ ℵ0 = |S| so |S| = |S| = κ.

Theorem 2.6. (Upward Löwenheim-Skolem Theorem3)[17] For a first-
order language L, if an L-theory T has an infinite model M and κ ≥ |L| is
an infinite cardinal, then T has a model with cardinality κ.

Proof. Define L∗ = L ∪ {ci : i < κ} by adding κ constant-symbols to L,
and an L∗-theory T ∗ = T ∪ {ci 6= cj : i, j < κ, i 6= j}. Every finite subset
of T ∗ is satisfied by M since |M| ≥ ℵ0, so by compactness theorem T ∗ is
satisfiable. However if N ′ � T ∗ then |N ′| ≥ κ (since T ∗ asserts N ′ has
atleast κ distinct elements.) Use the downward Löwenheim-Skolem theorem
to find an elementary substructure N 4 N ′ of cardinality κ, and read off N
as an L-structure. Observe N ′ � T ⇒ N � T to finish the proof.

Combined, the theorems assert that first-order languages cannot distinguish
between sizes of infinities- for every infinite cardinal bigger than |L|, an
L-structure M has elementary substructures or elementary expansions of
that size. This also shows why elementary equivalence is strictly weaker
than isomorphism- we can construct two elementarily equivalent structures
of different cardinalities. Skölem’s motivation was to show that this leads
to problems if the theory itself talks about cardinality:

Skölem’s ‘paradox’:[5] First order Zermelo-Fraenkel set theory (ZFC) asserts
the existence of uncountable sets. But the downward Löwenheim-Skolem
theorem asserts the existence of countable models of ZFC. How can there
be a countable model containing uncountable sets? Skölem wanted to use
this as an argument against uncountability, but pointed out how it isn’t actu-
ally a paradox. At best it is an equivocation fallacy: what is ‘uncountable’?

3Who called it upward Löwenheim-Skolem theorem and not Hı̈ghenheim-Skolem theo-
rem?
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ZFC is written in the language {ε} containing one binary relation-symbol.
In our (uncountable) model of ZFC, elements are sets (functions are con-
sidered to be sets), and the binary relation is interpreted as containment ∈.
‘There are uncountable sets’ then is the first order sentence saying ‘there
exists an x such that there does not exist a function which is a bijection
with domain N and range x.’ Of course, this is all expressed in terms of ε,
and the very first problem observed is ε might have different interpretations
in different models so the interpretation of countability itself changes from
model to model. More so, it is possible that there are sets the model ‘thinks’
are uncountable but are really countable: the bijection between the set and
N is not contained within our domain- and this is possible since there are
2ℵ0 functions between a countable set and N but only ℵ0 of them can be
contained within the domain of a countable model. The bijection can be
contained in a larger model, of course.

2.1.2 Games of Ehrenfeucht and Fräıssé[10][12]

If the Löwenheim-Skolem theorems give a method to move ‘up and down’
to establish elementary equivalence, Ehrenfeucht-Fräıssé games give a ‘back
and forth’ method. This was first given by Roland Fräıssé, then formulated
as a game by Andrzej Ehrenfeucht. For the rest of the section we assume L is
a first-order language with no function-symbols (this isn’t much of a problem
since we can simply replace functions with their graphs as relation-symbols).
A partial embedding between two L-structuresM = (M, ...) andN = (N, ...)
is a function f from A ⊆ M to B ⊆ N such that f ∪ {(cM, cN ) : c ∈ LC}
preserves the relations and constants of L.

For two L-structures M = (M, ...) and N = (N, ...) with disjoint universes,
we define a γ-turn two-player game Gγ(M,N ). We call the two players
Jerry and George. Jerry wants to show M and N are ‘similar’, George
wants to stop him. It is played in turns, and the length of the game γ is
already decided. At the ith turn, either

George picks an element mi ∈M and challenges Jerry to pick ni ∈ N , or

George picks an element ni ∈ N and challenges Jerry to pick mi ∈M .

Jerry wins if f = {(mi, ni) : i < γ} is a partial embedding.

A strategy is a function τ such that if George’s first k moves are āk−1 = (a0, a1, ..., ak−1)
then Jerry’s kth move is τ(āk−1).
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τ is a winning strategy for Jerry if {(ai, τ(āi)) : i < γ} is a partial embed-
ding, i.e. if playing according to τ helps Jerry win.

For γ < ω, we writeM∼γ N if Jerry has a winning strategy for Gγ(M,N ).
Observe that ∼γ is an equivalence relation on the set of L-structures.

Example 2.7. Say Jerry and George play the game for R andQ as L = {+, 0}-
structures. George picks some rational m0 6= 0 in R, so Jerry is forced to
pick some n0 6= 0 in Q. Now George simply picks an irrational m1 in
R. Whatever n1 Jerry picks, it will be a rational so there will exist non-
zero integers a, b such that n0 + n0 + ...+ n0︸ ︷︷ ︸

a times

= n1 + n1 + ...+ n1︸ ︷︷ ︸
b times

and hence

{(m0, n0), (m1, n1)} can never be a partial embedding.
Thus R ∼1 Q but R �2 Q.

Gω(M,N ) is the (countable) infinite Ehrenfeucht-Fräıssé game, and we say
M is back and forth equivalent to N if Jerry has a winning strategy for
Gω(M,N ).
We write M ∼ω N if for all n, M ∼n N . Note Jerry having a winning
strategy for Gω(M,N ) is stronger than M∼ω N .

Lemma 2.8. One of the players must have a winning strategy for Gn(M,N ).4

Proof. (Sketch) Let’s say Jerry has no winning strategy for Gn(M,N ), i.e.
there is a move George can make in round 1 so that nothing Jerry plays can
force a win. Say George plays that. Now whatever Jerry does, George still
has a move that he can make so that Jerry cannot force a win. And George
continues with this- the game has a winning strategy for George.5

We sayM andN are n-equivalent ifM � φ⇔ N � φ whenever depth(φ) ≤ n,
and write M≡n N .

Lemma 2.9. Let M and N be L-structures. Then M∼n N if and only if
M≡n N .

Proof. We proceed by induction on n:
If M≡n N and without loss of generality George plays a ∈M on round 1.
If {φ0, φ1, ..., φk} is a list of all formulae with depth < n and let ψ(x) be∧

M�φi(a)

φi ∧
∧

M2φi(a)

¬φi.

4See also: Zermelo’s theorem, determinacy of closed games
5in which case of course, George says ”the equivalence store called, they’re running out

of you!”
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Then depth(∃xψ(x)) ≤ n and M � ∃xψ(x) so N � ∃xψ(x). Thus there is
b ∈ N such thatM � φ(a)⇔ N � φ(b) whenever depth(φ) < n. Jerry plays
b in round 1. If n = 1 Jerry wins and we are done here.
If n > 1, add a constant symbol c to L and get L∗ = L ∪ {c}. Let (M, a)
and (N , b) be L∗-structures formed by interpreting c with a and b respec-
tively. We have chosen a and b such that (M, a) ≡n−1 (N , b) so by in-
duction hypothesis, Jerry has a winning strategy for Gn−1((M, a), (N , b)).
Let this result in a partial L∗-embedding f∗. Then f = f∗ ∪ {(a, b)} is a
partial L-embedding betweenM and N so Jerry has a winning strategy for
Gn(M,N ).

Conversely if M 6≡n N , without loss of generality there is some φ with
depth(φ) < n such that M � ∃xφ(x) and N � ∀x¬φ(x). George plays
a ∈ M such that M � φ(a). Whatever b ∈ N Jerry plays, N 2 φ(b). If
n = 1, George wins and we are done. If n > 1, we construct (M, a) and
(N , b) as above, and (M, a) 6≡n−1 (N , b) so George plays according to his
winning strategy for Gn−1((M, a), (N , b)).

Theorem 2.10. Let M and N be L-structures. Then M∼ω N if and only
if M≡ N .

Proof. Follows immediately from observing

M∼ω N ⇔ for all n, M∼n N ⇔ for all n, M≡n N ⇔M ≡ N .

These games are very useful techniques to establish elementary equivalence,
and the strategy of forming partial embeddings finds applications elsewhere
too. While it is reasonable to believe that isomorphism is ‘more fundamen-
tal’ than elementary equivalence since the latter depends on your language,
one may also argue that elementary equivalence is ‘more fundamental’- iso-
morphism relies on the existence of an explicit function between the two
structures, and hence on the set theoretic universe we are working in. Sim-
ilar to the case in Skolem’s ‘paradox’, it might be the case that our set the-
oretic universe is not large enough to contain the function that establishes
isomorphism. Elementary equivalence does not depend on the surrounding
universe, and hence free from such problems.

We conclude with a special case where the game is indeed useful in showing
isomorphism:
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Theorem 2.11. If M and N are countable L-structures, then Jerry has a
winning strategy for Gω(M,N ) if and only if M∼= N .

Proof. IfM∼= N then Jerry wins by playing according to the isomorphism.
Conversely let Jerry have a winning strategy. Then if George plays such that
every element in M and N is chosen atleast once, the partial embedding built
will be an isomorphism.

Example 2.12. (This is a question from the Numbers and Sets course taught the

Cambridge Mathematics Tripos. If you are currently studying Part 1A and haven’t

seen this question yet I strongly recommend you try solving it on your own before

reading the solution below.)

Find a bijection f : Q → Q \ {0}. Can f be strictly increasing
(that is, f(x) < f(y) whenever x < y)?[2]

Solution: For the language L with signature {<} (interpreted as the order-
relation), we have two L-structures M = (Q, <) and N = (Q \ {0}, <).
In the Ehrenfeucht-Fräıssé game Gω(M,N ), Jerry clearly has a winning
strategy since in either set, he can always pick an element between any two
elements. Since both the sets are countable, the partial embedding thus
build would be an isomorphism, i.e. a strictly increasing bijection.

2.2 Lindström’s Classification of First-Order Logic

The sentences you are allowed to write are determined by the ‘strength’
of your logic. We have a set S, carrying information about the syntax of
sentences. A logic L is the set S with a relation �L (the truth predicate)
between arbitrary structures and elements of S. We write L = (S,�L).[18]

One of the key properties the truth predicate must satisfy6 is closure un-
der isomorphism: for all signatures σ and all φ ∈ S, writing φσ for the
L(σ)-sentence corresponding to φ, if L(σ)-structures M and N are such
that M∼= N then M �L φσ if and only if N �L φσ.[18]

If we set S0 to be the set of all first-order sentence-syntaxes, and � as
defined in Definition 1.11, we get the first-order logic Lωω = (S0,�). The
key property is: our existential quantifiers must span over the whole domain

6The relation should be closed under isomorphism, negation, conjunction, existential
quantification, renaming, and free expansion.
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of the structure, and we are allowed finite conjunctions and finitely many
quantifiers in our sentences.

What do the two subscripts mean? For cardinals κ and λ, a general in-
finitary logic Lκλ is the logic that allows conjunction of up to κ formulae
by ∧ or ∨, and use of up to λ quantifiers in a row. Thus L∞0 allows unre-
stricted conjunction of quantifier-free formulae, while Lω∞ allows conjunc-
tion of finitely many formulae containing unrestricted quantification (such
as ∀(xi : i ∈ I)).[10]

Our quantifiers, however, can only span over elements in the domain. This
limits our study mostly to structures algebraic in nature. For example, one
can write a highly detailed description of R as a field of real numbers using
first order logic, however there is no way to encode the analytic properties
of R since the defining least upper bound property begins with quantification
over every subset. We need stronger some logic for that:

We get the second-order logic LII by allowing quantification not only over ele-
ments of the domain, but also over relations. This is achieved by adding i-ary
relation variables Xi, Y i, ... to the signature. For instance, M �LII ∀Xi φ is
interpreted as for every i-ary relation R on the domain ofM, (M, R) �LII φ.

Then, the least upper bound property can be encoded as:

for every non-empty subset︷ ︸︸ ︷
∀X1 (((∃z X1(z)) ∧

with an upper bound︷ ︸︸ ︷
(∃x ∀y X1(y)→ x ≥ y)) (2.1)

→ ∃s ((∀y X1(y)→ s ≥ y)︸ ︷︷ ︸
s is an upper bound

∧ ((∀x (∀y X1(y)→ x ≥ y))→ s ≤ x))).︸ ︷︷ ︸
if x is an upper bound then s is less than x

(2.2)

2.2.1 Comparing logics[18]

For a signature σ, write Str(σ) to be the set of all σ-structures. For φ ∈ S, φσ
is the σ-sentence determined by φ. Write ModL,σ(φ) = {M ∈ Str(σ) :M �L φσ}.

We say a logic L = (S,�L) is less expressive than a logic L′ = (S′,�L′),
written L ≤ L′, if for every φ ∈ S there is a φ′ ∈ S′ such that for every
signature σ, ModL,σ(φ) = ModL′,σ(φ′). Another way to put this is every
class of structures finitely axiomatizable in L is finitely axiomatizable in L′.
Informally, this says everything expressible in L is expressible in L′.
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Two logics are equivalent, written L ≡ L′, if L ≤ L′ and L′ ≤ L.

2.2.2 Lindström’s theorem[18]

We can now discuss what makes first-order logic so powerful. The definitions
of compactness property and downward Löwenheim-Skolem property follow
immediately from the respective theorems. Then, a slightly weaker7 version
of the theorem is given as:

Theorem 2.13. (Lindström’s theorem) Let L be a logic such that L ≥ Lωω.
Then L has the compactness property and the downward Löwenheim-Skolem
property if and only if L ≡ Lωω.

Proof. (Sketch) Suppose L is a logic satisfying both given properties, but
some φ ∈ S is not first-order definable, i.e. ModL,σ(φ) cannot be written as
ModLωω ,σ(ψ) for any first-order ψ. Assume σ is finite and relational.
From Lemma 1.7 we know only there are only finitely many first order
formulae with depth up to n. Call two structures n-equivalent (M≡n N )
if they satisfy the same first-order formulae of depth up to n. Then we have
only finitely many n-equivalence classes on Str(σ). Since φ is not first-order
definable, we can find two σ- structures M and N such that:

M≡n N
M �L φ
N �L ¬φ.

Lindström encodes the above in ψ(n) ∈ S using Ehrenfeucht- Fräıssé char-
acterization of n-equivalence, since M≡n N ⇒M ∼n N from Lemma 2.9.
By compactness, since this is satisfiable for every n, we have two structures
M and N such that Jerry has a winning strategy for Gω(M,N ).8

By downward Löwenheim-Skolem property, we can assume M and N are
countable.
But then by Theorem 2.11, M ∼= N . This is a contradiction, since �L is
closed under isomorphism (if M∼= N then M �L φ⇔ N �L φ).

This theorem says that any logic more expressive than first-order cannot
have both the compactness and the downward Löwenheim-Skolem proper-
ties. This is important, for the compactness theorem is one of our most

7The stronger version assumes countable compactness instead of compactness.
8We use compactness to go from M ∼ω N to the stronger condition, Jerry having a

winning strategy for Gω(M,N )
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useful tools.

An interesting observation would be the result that any ordered field with
the least upper bound property must be isomorphic to (R, <,+, ·, 0, 1). If
the least upper bound property were expressible in first-order (the axioms
of an ordered field already are), then by the Löwenheim-Skolem theorems
we would have to accomodate models that are non-isomorphic to the real
numbers. However the result is true and the least upper bound property
cannot be expressed in first order logic.
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Chapter 3

Boole, Arrow, and
Compactness Revisited

3.1 Boole

The discussion that follows is applicable to any partially ordered set. We
shall use a setting of Boolean Algebras. Define σB = {¬,∨,∧, 0, 1} (symbols
treated differently from the logical conjunction and negation symbols of the
language) and an elementary class axiomatized by:

{∀x x ∨ x = x, ∀x x ∧ x = x,

∀xy x ∨ y = y ∨ x, ∀xy x ∧ y = y ∧ x,
∀xy (x ∧ y) ∨ y = y, ∀xy (x ∨ y) ∧ y = y,

∀xyz (x ∨ y) ∨ z = x ∨ (y ∨ z), ∀xyz (x ∧ y) ∧ z = x ∧ (y ∧ z),
∀xyz x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀xyz x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

∀x x ∨ ¬x = 1, ∀x x ∧ ¬x = 0,

0 6= 1}

We write x ≤ y if x ∧ y = x.[10]

Structures satisfying these axioms are called Boolean Algebras. An example
of a Boolean algebra is the powerset algebra of a set X: the universe is the
powerset of X, ‘0’ and ‘1’ are ∅ and X respectively, ‘¬’ is set-theoretic com-
plement, ‘∧’ and ‘∨’ are ∩ and ∪ respectively, and ‘≤’ is ⊆. We say Boolean
algebra over X to refer to the powerset algebra of X.

Another example is 2 = {0, 1}, where we refer to the elements 0 and 1
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as false and true respectively. Given any Boolean algebra B, we construct

a function θ : B → 2 by setting θ(a) =

{
0 a is not nice

1 a is nice
, for some prop-

erty called niceness. For the discussion to be meaningful, the map will have
to be a homomorphism. This immediately imposes some conditions on the
elements that can be nice, i.e. elements in θ−1(1) = U:

0 /∈ U, 1 ∈ U

if a ∈ U and a ≤ b then b ∈ U,

if a, b ∈ U then a ∧ b ∈ U,

a ∈ U⇔ ¬a /∈ U.

Any U ⊆ B which satisfies the above properties is called an ultrafilter on B.
Observe that every homomorphism B → 2 determines a unique ultrafilter
from its pre-image of 1. Conversely, every ultrafilter U on B determines a

unique homomorphism θ : B → 2 given by θ(a) =

{
0 a /∈ U

1 a ∈ U
.

If only the first three conditions are obeyed, the set is called a filter. It
is easy to see that every Boolean algebra has atleast one filter- the trivial
filter {1}.

Filters and ultrafilters capture the idea of large sets. An ultrafilter on the
Boolean algebra on V (an ultrafilter on V ) represents the least structure
any collection of subsets of V should have to meaningfully classify the sub-
sets while respecting the logical structure (i.e. by a homomorphism onto 2).
One can look at a filter on V as the collection of sets that contain ‘mostly
everything’- this gives good intuition on why the definition was chosen:

∅ does not contain ‘mostly everything’ while V does,
if A contains ‘mostly everything’ and A ⊆ B then B contains ‘mostly

everything’, and
if A and B both contain ‘mostly everything’ then so does A ∩B.

A direct example illustrating this is the Fréchet filter, also called the cofinite
filter on an infinite set V :

{X : V \X is finite}.

While this is not an ultrafilter on the powerset algebra of V , it is an ultrafil-
ter on the finite-cofinite algebra- the Boolean algebra of all finite subsets of

27



V and their complements. But can every Boolean algebra have ultrafilters?

A set W of elements of a Boolean algebra B is said to have the finite in-
tersection property if for every finite collection Φ ⊆ W ,

∧
Φ 6= 0. Clearly,

every filter has the finite intersection property. If W ⊆ B has the finite
intersection property, call⋂

{F : F is a filter over B, W ⊆ F}

the filter generated by W . Observe that this indeed is a filter.

Theorem 3.1. (Maximality of ultrafilters)[7] For a Boolean algebra B,
the following are equivalent:

(i) U is an ultrafilter on B.

(ii) U is a maximal filter on B: no filter F on B satisfies U ( F.

Proof. (i) ⇒ (ii): Assume (i) and let F be a filter on B such that U ( F.
If a ∈ F \ U then a /∈ U ⇒ ¬a ∈ U ⇒ ¬a ∈ F. But then 0 = a ∧ ¬a ∈ F,
a contradiction since F is a filter.
(ii)⇒ (i): If U is a maximal filter, 0 /∈ U hence for any a ∈ B at most one
of a or ¬a can be in U. Suppose for some a ∈ B, ¬a /∈ U.
Let V = U ∪ {a}. V has the finite intersection property: for any finite
collection Φ ⊆ V,

∧
Φ is of the form x or x∧a for some x ∈ U. Consequently,

x 6= 0 and since ¬a /∈ U, we cannot have x ≤ ¬a, i.e. x ∧ a 6= 0.
We can define F to be the filter generated by V. Now F itself is a filter over
B and hence U is not a proper subset of F by maximality of U. However,
from definition of F, we have U ⊆ V ⊆ F, thus U = V = F and a ∈ U.

Theorem 3.2. (Boolean prime ideal theorem)[7] For a Boolean alge-
bra B, let W ⊆ B have the finite intersection property. Then there is an
ultrafilter U on B such that W ⊆ U.

Proof. Let X = {F : F is a filter over B, W ⊆ F}. The filter generated by
W is in X so the set is non-empty. For any non-empty chain C of filters in
X,

⋃
C itself lies in X. Then by Zorn’s lemma, X has a maximal element

say U. Claim that U is a maximal filter on B: if a filter U′ is such that
U ⊆ U′ then W ⊆ U′, i.e. U′ ∈ X. But U is maximal in X, so U′ = U.
Then, from Theorem 3.1, it follows that U is an ultrafilter.
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The Boolean prime ideal theorem cannot be proven without invoking the
axiom of choice in some form. In fact, it is a strictly1 weaker version of
the axiom of choice- hence becoming a kind of set theoretic choice princi-
ple. It gets its name from the fact that it is originally stated as a theorem
about ideals- the dual notion of filters. Similarly, the dual of an ultrafilter
is a prime ideal. The prime ideal corresponding to the ultrafilter U is the
set {a : ¬a ∈ U}. While the ultrafilter corresponds to the pre-image of 1
in the homomorphism B → 2, the prime ideal is the pre-image of 0. The
Boolean prime ideal theorem then says that there are enough prime ideals
on the Boolean algebra to extend every ideal to a maximal one, or in terms
of duals, to extend every filter to an ultrafilter. It can be shown that this
result is equivalent to the Compactness theorem![10]

Call an ultrafilter principal if it is of the form {x : a ≤ x} for some a ∈ B,
and non-principal otherwise. A simple corollary of the Boolean prime ideal
theorem is that non-principal ultrafilters exist on infinite sets, as can be
shown by extending the cofinite filter on the set to an ultrafilter on the
powerset algebra.

Theorem 3.3. A principal filter U on a set V must be of the form {X ⊆ V : a ∈ X}
for some a ∈ V .

Proof. Since U is non-empty, by principality it has some smallest (under
the order defined by <) non-empty element A. Hence there is an a ∈ A and
A\{a} /∈ U which means (V \(A\{a})) ∈ U. But then (V \(A\{a}))∩A =
{a} ∈ U, so U′ = {X ⊆ V : {a} ∈ X} ⊆ U. Observe U′ itself is an
ultrafilter on V , so by maximality of ultrafilters we must have U = U′.

Theorem 3.4. An ultrafilter U on a finite set V must be principal.

Proof. Since V is finite and U is non-empty, by well-ordering principle2 it
has some element A with the lowest cardinality. A must be non-empty.
Hence there is an a ∈ A and A \ {a} /∈ U which means (V \ (A \ {a})) ∈ U.
But then (V \ (A \ {a}))∩A = {a} ∈ U, so U′ = {X ⊆ V : {a} ∈ X} ⊆ U.
Observe U′ itself is a principal ultrafilter on V , so by maximality of ultra-
filters we must have U = U′.

The result that there are no non-principal ultrafilters on a finite set has
interesting consequences in Voting theory.

1See Halpern and Lévy [1971]
2compare with proof of Theorem 3.3
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3.2 Arrow’s Theorem[3][15][16][19]

Let V be a discrete set (the set of voters3), the elements of which have to
order a finite set S with atleast 3 elements (the set of candidates). If O(S) is
the space of all total orderings on S, we define a voting system to be a triple
(V, S, F ) where F : O(S)V → O(S) is a function that takes the preference
orders of all voters as input (in the form of a function f : i 7→<i called the
preference profile) and outputs the result <f∈ O(S).
For a, b ∈ S and X ⊆ V , write a <X b if a <i b for all i ∈ X.

Definition 3.5. A voting system (V, S, F ) is perfect if for all a, b ∈ S it
obeys

(i) Consensus: for a preference profile f : i 7→<i, if a <V b then a <f b.

(ii) Independence of irrelevant alternatives: for two preference profiles
f : i 7→<i and f ′ : i 7→<′i, if for all i, a <i b ⇔ a <′i b, then a <f b ⇔
a <f ′ b.

(iii) Non-dictatorship: there is no d ∈ V such that a <d b⇒ a <f b.

We discussed in the previous section how filters capture the idea of ‘large
subsets’. In fact, perfect voting systems are closely related with ultrafilters:

Theorem 3.6. If U is a non-principal ultrafilter on a set V , then there is
a unique voting system (V, S, F ) such that for a preference profile f : i 7→<i
and distinct a, b ∈ S, a <f b if and only if a <X b for some X ∈ U.
Moreover, the voting system is perfect.

Proof. Define F as given. Knowing pairwise relative orderings uniquely
determines the resulting ordering on S: for a, b, c ∈ S, if a >f b and b >f c
then we must have a >A b and b >B c for some A,B ∈ U. But then
a >A∩B c and A∩B ∈ U, so the resulting order a >f b >f c is determined.
So it remains to show that the pairwise orderings are determined uniquely:
say a, b ∈ S, and X = {i ∈ V : a <i b} be the set of people who preferred
b to a. Then naturally, V \X = {i ∈ V : a >i b} is the set of people who
prefer a to b. Now U is an ultrafilter, so exactly one of X or V \ X is in
U, without loss of generality X ∈ U. Then a <X b , so a <f b, i.e. a result
exists in all cases. Also, every set Y such that a >Y b must be a subset of
V \X so Y /∈ U, and F cannot return both a <f b and a >f b.
Consensus holds, since V is in U for every ultrafilter U. The system is also

3Not necessarily finite.
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independent of irrelevant alternatives, since the only factor in deciding the
relative ordering of two elements was their relative ordering in the voting
profile. Non-dictatorship holds from non-principality of U.
Thus the voting system is perfect.

The converse is true as well. In a voting system (V, S, F ), call a subset
W ⊆ V a winning coalition if for a, b ∈ S we have a <f b whenever a <i b
for all i ∈ W . This means that a winning coalition can determine the final
ordering of any a, b ∈ S against the strongest opposition.

Theorem 3.7. The set U of winning coalitions in any perfect voting system
(V, S, F ) forms a non-principal ultrafilter on V .

Proof. Clearly, ∅ /∈ U and V ∈ U from consensus.
If A is a winning coalition then B ⊇ A is automatically a winning coalition.
If A and B are winning coalitions, A and B cannot be disjoint. Then for
a, b, c ∈ S consider the following voting profile:

f :


a >i b >i c i ∈ A \B
b >i c >i a i ∈ B \A
b >i a >i c i ∈ V \ (A ∪B)

c >i a >i b i ∈ A ∩B

Then a >A b and c >B a. Since the two are winning coalitions, the result
must be c >f a >f b. From independence of irrelevant alternatives, this
shows that A∩B must be a winning coalition since it is the only set asserting
c > b.
If A is not a winning coalition, then for the voting profile

f :

{
a <i b i ∈ A
a >i b i ∈ V \A

the result is a >f b. But this is exactly the condition for V \ A to be a
winning coalition.
Thus the set of winning coalitions is an ultrafilter on V . If it were principal,
from Theorem 3.3 the voting system would be a dictatorship, hence the
ultrafilter must be non-principal.

Corollary 3.8. (Arrow’s Theorem) Any voting system (V, S, F ) with a
finite number of voters cannot be perfect.

Proof. Follows immediately from Theorem 3.4.
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3.3 Ramsey’s results[4][10]

Let X be a set, linearly ordered by <. Then for a positive integer k, we write
[X]k to denote the set of all strictly increasing k-tuples in X. For a function
f with domain [X]k, we say Y ⊆ X is f-indiscernible if for all ā, b̄ ∈ [Y ]k,
f(ā) = f(b̄) i.e. f cannot distinguish between subsets of k elements in [Y ].
Similarly if an L-structure X = (X, ...) is linearly ordered by < and Φ is
a collection of L-formulae in k free variables, we say a subset Y ⊆ X is
Φ-indiscernible if for every φ ∈ Φ and ā, b̄ ∈ [Y ]k, X � φ(ā)↔ φ(b̄).

Example 3.9. f X is a vector space with some linear ordering on it, the
set Y of bases is φ-indiscernible for every first-order formula φ, since for
any two strictly increasing k-tuples from Y there is an automorphism of X
which takes one to another.

Frank Ramsey’s work focussed on establishing combinatorial results about
the existence of indiscernible subsets in large sets. This forms an entire
branch of combinatorics called Ramsey theory, and the central idea is that
if one adds ‘enough’ disorder to the system it is inevitable to create some
pattern. We first look at notation, introduced by Paul Erdös and Richard
Rado.

Let λ, µ and ν be cardinals and k a positive integer. We write

λ→ (µ)kν

to mean if X is any linearly ordered set of cardinality λ, and f : [X]k → ν
is a function then X has an f -indiscernible subset of cardinality µ. Stated
in terms of the more familiar ‘graph-colourings’, the notation says that in
a graph of λ points, if each subset of k points is assigned one of ν colours
then there will be atleast µ subsets all of the same colour.
Observe that if λ′ ≥ λ, µ′ ≤ µ, ν ′ ≤ ν and k′ ≤ k then λ′ → (µ′)k

′

ν′ whenever
λ→ (µ)kν .

Example 3.10. For all positive integers n, n→ (2)1n−1, i.e. when n points
are coloured in n− 1 colours then you can always find 2 of the same colour.
This result has a name: the pigeonhole principle. It also has an infinite ver-
sion: for all positive integers n, ω → (ω)1n i.e. if an infinite set is partitioned
into finitely many parts, atleast one will be infinite.45 In fact, something

4Similar arguments can be made with countability: ω1 → (ω1)1ω, i.e. if an uncountable
set is partitioned into countably many pieces then atleast one must be uncountable.

5In fact, non-principal ultrafilters are a form of infinitary pigeonhole principle: if an
infinite set is partitioned into finitely many parts, exactly one will be in the ultrafilter.
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stronger is true:

Theorem 3.11. (Ramsey’s theorem, infinite form) For all positive
integers k and n, we have ω → (ω)kn.

Proof. We first prove for n = 2.
Let N = {0, 1, 2, ...} be the set of cardinality ω, and we have a 2-colouring
of [N]k given by [N]k = A ∪ B. Given a non-principal ultrafilter U, we
inductively define 2-colourings of [N]i for i ≤ k:
Let Ai be the set of all red elements of [N]i, and Bi be the set of all blue
elements. Then let Ak = A and Bk = B. If [N]i = Ai ∪ Bi then we
say any element P of [N]i−1 is red if it is in ‘mostly red i-sets’ i.e. the set
X(P ) = {a ∈ N : a > max(P ), P ∪{a} is red} is an element of the ultrafilter
U.

Ai−1 = {P ∈ [N]i−1 : X(P ) = {a : a > max(P ), P ∪ {a} ∈ Ai} ∈ U},
Bi−1 = {P ∈ [N]i−1 : X(P ) = {a : a > max(P ), P ∪ {a} ∈ Bi} ∈ U}.

Observe from the properties of U it is true that Ai−1 and Bi−1 form a
2-colouring of [N]i. Thus we get a 2-colouring of N by A1 and B1. Since
A1 = (B1)c, without loss of generality, A1 ∈ U.
We inductively define a sequence j0 < j1 < ... < jm < ...: choose j0 ∈ A1. If
{j0, j1, ..., jm} is such that all its subsets are red, then for P ⊆ {j0, j1, ..., jm},
the set X(P ) is in U. Since there can only be finitely many such subsets,

Y =
⋂

P⊆{j0,j1,...,jm}

X(P ) ∈ U.

Since the ultrafilter is non-principal, Y must be infinite so we can choose
jm+1 > jm in Y . Then every subset of {j0, j1, ..., jm+1} is red. This lets us
build an infinite set J = {j0, j1, ...} ⊆ N such that every finite subset of J of
size ≤ k is red, hence [J ]k ⊆ A. Since every set of size ω can be bijectively
mapped to N, we have ω → (ω)k2 for every positive integer k.
Now given a positive integer n, a set I of cardinality ω, and an n- colouring
of [I]k given by sets A0, A1, ..., An−1 we must have an infinite set I0 ⊆ I such
that [I0]

k ⊆ A0 or [I0]
k ⊆ A1∪A2∪...∪An−1. If [I0]

k ⊆ A0 then done, else we
can similarly find I1 ⊆ I0 such that [I1]

k ⊆ A1 or [I1]
k ⊆ A2∪A3∪ ...∪An−1.

In this way there must be an infinite subset J ⊆ I such that [J ]k is contained
in one of the n partitions, thus proving ω → (ω)kn.

Stated for k = 2, this says for any n-colouring on a complete infinite graph,
one can always find a complete monochromatic infinite graph, i.e. an infinite
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collection of points such that they are all connected to each other with edges
of the same colour.

Corollary 3.12. (Ramsey’s theorem, finite form) For positive integers
m,n and k there exists a positive integer l such that l→ (m)kn.

Proof. Clearly, must have l ≥ n. Assume for the sake of contradiction
that there is no l < ω such that l→ (m)kn. Consider the signature L =
{<, f, 1, ..., n − 1, n} where < is a binary relation-symbol, f is an k-ary
function-symbol and 1, ..., n are constant-symbols. Let φ be the sentence

∃x1∃x2...∃xm,

 ∧
1≤i<j≤m

(xi 6= xj)

 ∧

 ∨
i=1,2,...,n

 ∧
y1,y2,...,yk∈{x1,x2,...,xm}

((y1 < y2 < ... < yk) ∧ f(y1, y2, ..., yk) = i)

 .

φ says there is a subset of size ≥ m which is f -indiscernible. Let Al be an
L-structure of cardinality l(≥ n) in which all constant-symbols have distinct
interpretations. Since no l < ω satisfies l → (m)kn, all Al satisfy ¬φ. Since
¬φ has arbitrarily large finite models, by compactness it has an infinite
model. But this contradicts Theorem 3.11.

These numbers l are called Ramsey numbers. The standard example is
6 → (3)22, i.e. in a 2-colouring of the complete graph on 6 points, one can
always find a monochromatic triangle. The precise value 6 is found by a
neat pigeonhole argument which can be found in any introduction to the
subject. Indeed, Corollary 3.12 only proves the existence of such numbers,
and gives no estimate on their size. Paul Erdös sums up the struggle in an
interesting quote-

Suppose aliens invade the earth and threaten to obliterate it in a
year’s time unless human beings can find the Ramsey number for
red five and blue five. We could marshal the world’s best minds
and fastest computers, and within a year we could probably cal-
culate the value. If the aliens demanded the Ramsey number for
red six and blue six, however, we would have no choice but to
launch a preemptive attack.
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3.4 The Ultraproduct Construction

The Löwenheim-Skolem theorem constructs elementary extensions of mod-
els by adding enough constant-symbols to the vocabulary. There is a more
straightforward method of extending models, based on the recurring math-
ematical theme of taking direct products.

Suppose we have a set Ai for each i in a non-empty set I. Then we de-
fine the direct product

∏
I Ai to be the set of all functions a : I →

⋃
I Ai

such that a(i) ∈ Ai.

Definition 3.13. For a signature L and L-structures Ai = (Ai, ...) for each
i in a non-empty set I, the direct product

∏
I Ai is the L-structure B such

that

(i) the domain of B is B =
∏
I Ai,

(ii) for each constant-symbol c ∈ L, cB = a ∈ B such that a(i) = cAi ,

(iii) for each n-ary function-symbol f ∈ L and ā = (a0, a1, ..., an−1) ∈ Bn,
fB(ā) = b ∈ B such that b(i) = fAi(ā(i)),

(iv) for each n-ary relation-symbol R ∈ L and ā ∈ Bn, ā ∈ RB if and only
if for every i ∈ I, ā(i) ∈ RAi .

Note when we write ā(i) we always mean (a0(i), a1(i), ..., an−1(i)) and never
ai.

This definition immediately brings with it the canonical projection maps
pi :

∏
I Ai → Ai given by pi(a) = a(i) which exist for each i ∈ I. These are

homomorphisms, as can be easily verified. By setting all Ai = A for some
fixed L-structure A, we determine the Ith power of A, written AI =

∏
I Ai.

Then we define the diagonal embedding to be the map d : A → AI such that
for a ∈ A, d(a) is the constant map with value a.[10]

3.4.1 Reduced Products[10]

Suppose we have a set Ai for each i in a non-empty set I. Given a filter F
on I, we can define a relation ∼ on

∏
I Ai given by

a ∼ b⇔ {i : a(i) = b(i)} ∈ F.

Proposition 3.14. ∼ is an equivalence relation.
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Proof. I ∈ F, so for all a ∈
∏
I Ai, a ∼ a and ∼ is reflexive.

The definition is symmetric in a and b, so ∼ is symmetric.
If a ∼ b and b ∼ c, then {i : a(i) = b(i)}∩{i : b(i) = c(i)} ⊆ {i : a(i) = c(i)}.
Since filters are closed under finite intersections and superset, we have a ∼ c,
so ∼ is transitive.

Write a/F for the equivalence class of a- this is the set of functions which
agree with a ‘mostly everywhere6’. We define the reduced product

∏
I Ai/F

to be the set of all ∼-equivalence classes.

This definition extends to reduced products of structures: for signature
L, let Ai = (Ai, ...) be L-structures for each i in a non-empty set I, and
B =

∏
I Ai. If F is a filter on I, we define the reduced product

∏
I Ai/F to

be the L-structure C such that

(i) the universe of C is C =
∏
I Ai/F,

(ii) for constant-symbol c ∈ L, cC = cB/F,

(iii) for n-ary function-symbol f ∈ L and ā = (a0, a1, ..., an−1) ∈ Bn,
fC(ā/F) = fB(ā)/F,

(iv) for n-ary relation-symbol R ∈ L and ā ∈ Bn, ā/F ∈ RC if and only if
{i ∈ I : ā(i) ∈ RAi} ∈ F.

Note that we write ā/F to mean (a0/F, a1/F, ..., an−1/F). Use proper-
ties of filters to make sure that the interpretation of relation-symbols is
sound. Observe then that the direct product

∏
I Ai is the reduced product∏

I Ai/{I}.

The reduced power AI/F is obtained by letting all Ai = A for a fixed struc-
ture A, and the diagonal embedding e : A → AI/F is given by e(a) = b/F
where b(i) = a for all i ∈ I.

Example 3.15. (This is a question from the Numbers and Sets course taught the

Cambridge Mathematics Tripos. If you are currently studying Part 1A and haven’t

seen this question yet I strongly recommend you try solving it on your own before

reading the solution below.)

Each of an infinite set of Trappist set theorists is going to a party,
where each will receive a coloured hat, either red or blue. Each

6See discussion on filters
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person will be able to see every hat but his own. After all hats
are assigned, the set theorists must, simultaneously, each write
down (in silence, obviously) a guess as to their own hat colour.
You are asked to supply them with a strategy such that, should
they follow it, only finitely many of them will guess wrongly.
Can you?[1]

Solution: There is a strategy: let C = {red, blue} be the set of hat-colours.
If I is the set of all set theorists and F is the Fréchet filter on I, the set
theorists all memorize a representative element7 from each equivalence class
in CI/F. Since they can observe all hats but one, it is possible to place the
sequence of hat-colours in an equivalence class a/F represented by a. The
set theorists then guess whichever hat-colour a assigns to them.

If the reduction is by an ultrafilter, the reduced product has nice properties.

3.4.2 Ultraproducts

An ultraproduct is a reduced product
∏
I Ai/U where U is an ultrafilter on

the set I. An ultrapower is a reduced power AI/U.

Theorem 3.16. ( Loś’s8 Theorem)[7] For a first-order language L, let
{Ai : i ∈ I} be a collection of L-structures, where I is a non-empty set
with an ultrafilter U on it. Then for any L-formula φ(x̄) and every tuple
ā ∈

∏
I Ai,

∏
I Ai/U � φ(ā/U) if and only if {i : Ai � φ(ā(i))} ∈ U.

Proof. We proceed by induction on the set of L-formulae.
If φ is atomic, then the statement is true from the way relation-symbols are
interpreted in reduced products.
If φ is ¬ψ then∏

I

Ai/U � φ(ā/U)⇔
∏
I

Ai/U 2 ψ(ā/U)

⇔ {i : Ai � ψ(ā(i))} /∈ U

⇔ {i : Ai 2 ψ(ā(i))} ∈ U

⇔ {i : Ai � φ(ā(i))} ∈ U

7Using the axiom of choice
8Pronounced wash
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If φ is ψ ∧ θ then∏
I

Ai/U � φ(ā/U)⇔
∏
I

Ai/U � ψ(ā/U) ∧ θ(ā/U)

⇔
∏
I

Ai/U � ψ(ā/U) and
∏
I

Ai/U � θ(ā/U)

⇔ {i : Ai � ψ(ā(i))} ∈ U and {i : Ai � θ(ā(i))} ∈ U

⇔ {i : Ai � ψ(ā(i))} ∩ {i : Ai � θ(ā(i))} ∈ U

⇔ {i : Ai � ψ(ā(i)) ∧ θ(ā(i))} ∈ U

⇔ {i : Ai � φ(ā(i))} ∈ U

If φ(x̄) is ∀ȳ ψ(ȳ, x̄) then (assume without loss of generality that the n-tuple
ȳ is free in ψ, else it would fall into one of previous categories.)∏

I

Ai/U � φ(ā/U)⇔
∏
I

Ai/U � ∀ȳ ψ(ȳ, ā/U)

⇔ for all b̄ ∈ (
∏
I

Ai)
n,

∏
I

Ai/U � ψ(b̄/U, ā/U)

⇔ for all b̄ ∈ (
∏
I

Ai)
n, {i : Ai � ψ(b̄(i), ā(i))} ∈ U

⇔ {i : for all b̄(i) ∈ (Ai)
n, Ai � ψ(b̄(i), ā(i))} ∈ U

⇔ {i : Ai � ∀ȳ ψ(ȳ, ā(i))} ∈ U

⇔ {i : Ai � φ(ā(i))} ∈ U

Thus by induction on the set Form(L), the statement is true.

Corollary 3.17. (Transfer principle)[13] For a language L, letM = (M, ...)
be an L-structure. If I is a set with an ultrafilter U on it. Then for every
L-sentence φ, M∗ = (M I/U, ...) � φ if and only if M � φ. In other words,
Any structure is elementarily equivalent to its ultrapowers.[7]

 Loś’s is important enough to be dubbed the fundamental theorem of ultra-
products. A sentence is true in the ultraproduct if and only if it is true in
‘a large subset’ of structures- one can imagine the structures ‘voting’ if the
sentence is true or not. But why ultraproducts? Most of model-theoretic
results can be derived without using ultraproducts, as we have so far. In
fact [12] barely mentions ultraproducts in his extended discussion of model
theory. Historically, however the theorem is important because of its exten-
sive application in set theory and non-standard analysis. The construction
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is also generally applicable in a variety of situations (not just models) and
a neat trick to have up your sleeve.9 Also, it provides a characterization of
elementary classes.

Corollary 3.18. (Compactness theorem)[7] Let Σ be a set of L- sen-
tences and I = {X : X ⊆ Σ, X is finite}. If for all i ∈ I there exists a
model Ai � i, then there is an ultrafilter U on I such that

∏
I Ai/U � Σ.

Proof. For each σ ∈ Σ, let σ̂ = {i ∈ I : σ ∈ i}. Then the set {σ̂ : σ ∈ Σ}
has finite intersection property- {σ0, σ1, ..., σn} ∈ σ̂0 ∩ σ̂1 ∩ ...∩ σ̂n 6= ∅, thus
by Theorem 3.2 can be expanded to an ultrafilter U on I. Since σ̂ ∈ U
for each σ ∈ Σ, we have σ̂ ⊆ {i : Ai � σ} ∈ U. Then from Theorem 3.16,∏
I Ai/U � Σ.

Corollary 3.19.[7] A set of L-structures is an elementary class if and only
if it is closed under elementary equivalence and ultraproducts.

Proof. An elementary class is clearly closed under elementary equivalence
and ultraproducts.
Conversely, if a set of L-structures K is closed under ultraproducts and
elementary equivalence, let T be the L-theory of sentences satisfied by all
structures in K. IfM is any model of T and Th(M) is the full theory ofM,
then every element i in I = {X ⊆ Th(M) : X is finite} is satisfied by some
element Ai ∈ K (otherwise ¬

∧
i would be satisfied by every element in K

hence ¬
∧
i ∈ T but M 2 ¬

∧
i, contradiction.) Then by Corollary 3.18 we

can construct an ultraproduct
∏
I Ai/U which must satisfy Th(M) hence∏

I Ai/U ≡ M. But since K is closed under ultraproducts and elementary
equivalence, we have

∏
I Ai/U ∈ K and thus M ∈ K. Hence K is the

elementary class axiomatized by T .

Just to put into perspective how compact10 the proof of the Compactness
theorem in Corollary 3.18 is compared to Corollary 1.17, Henkin’s proof
of Theorem 1.16 involves adding constant-symbols and special function-
symbols to expand the language and theory so that every existential state-
ment is witnessed, expanding the theory to a maximal one, showing it is
satisfiable and then translating back to the original theory, the method is
called Henkin constructions (See [12] for the detailed proof). The expanded
theory is called a Skolemization, and satisfies the following properties- every

9Also you are lying if you say anything with ultra in its name is not cool.
10Not sorry
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model of the original theory can be expanded into a model of the Skolemiza-
tion, and for every formula φ(x̄, y) there is a term t in the expanded language
such that ∀x̄( ∃y φ(x̄, y)→ φ(x̄, t(x̄)) ).

3.5 Non-standard Universes

Henkin’s method of Skolemization essentially helps us pass from ∀x ∃yφ(x, y)
to ∃F ∀x φ(x, F (x)), i.e. switching the order of quantifiers. Ultraproducts
help us with something similar, but instead of adding new functions we add
new elements.
For L = {<,+, ·, 0, 1} consider the theory

Th(R) ∪ {∃x, 0 < x <
1

1 + 1 + ...+ 1︸ ︷︷ ︸
i times

: i = 0, 1, 2, ...}.

This is finitely satisfiable by R, hence by the compactness theorem it has
a model R∗, called the set of non-standard real numbers. In addition to all
first order properties of R, this set also satisfies sentences like ∃x ∀y, x > y
and ∃x ∀y > 0, 0 < x < y. These properties assert the existence of arbitrar-
ily large and small numbers, and helped Abraham Robinson formalize the
ancient but more intuitive approach to calculus through infinitesimals.[14]

3.5.1 Hyperreal Numbers[13]

Compactness theorem asserts the existence of a non-standard set of real
numbers, ultraproducts help us construct one. Cauchy defined the real
numbers11 as equivalence classes on QN. In a similar fashion we define the
hyperreal numbers (R,Z,+, ·, 0, 1)∗ from (R,Z,+, ·, 0, 1) to have the universe
R∗ = RN/U, for some fixed non-principle ultrafilter U on N. It follows im-
mediately from the transfer principle that R∗ is a field, since all field axioms
are expressible as first order sentences.

Henceforth we only write R and R∗ for the structures. Since the struc-
ture specifies all integers (by assigning constant-symbols in the vocabulary),
the ∗-transform immediately gives us the hyperintegers Z∗ and the hyper-
naturals N∗. Since the existence of multiplicative inverses can be written in
first order, we also have the set of hyperrationals Q∗.

11See Cauchy sequences
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By identifying r ∈ R with (r, r, r, ...)/U = r∗ ∈ R∗, we see that the real
numbers are a subfield of hyperreals. In fact, R is a proper subfield, since
the hyperreal (1, 2, 3, ...)/U does not coincide with any real number. Since
there are (2ℵ0)ℵ0 = 2ℵ0 sequences in RN, we see that R∗ has the same car-
dinality as R.

Functions on R extend naturally to functions on R∗, by assigning

f((a0, a1, a2, ...)/U) = (f(a0), f(a1), f(a2), ...)/U.

We thus have a well defined notion of the absolute value |x| of any hyperreal
x. Writing ω = (1, 2, 3, ...)/U, we see that |ω| > |x∗| for every x ∈ R. Such
numbers are called unlimited hyperreals. Hyperreals that are not unlimited
are called limited. On the other hand, writing ε for the multiplicative inverse
(1, 12 ,

1
3 , ...)/U of ω, it is true that 0 < |ε| < |x∗| for every non-zero x ∈ R.

These hyperreals are called infinitesimals.

To illustrate how the transfer principle does not hold for logics stronger
than first order, we show how the key second-order property of real num-
bers (the least upper bound property (2.1)) is false in the hyperreals: R is a
non-empty bounded subset of R∗ without a supremum- for if s is such that
s ≥ x∗ for every x ∈ R, then s must be unlimited- but then s − 1∗ < s is
also unlimited and hence there is no least upper bound.

Definition 3.20. Two hyperreal numbers x and y are close (written x ' y)
if their difference is infinitesimal or zero.

Closeness is an equivalence relation- the equivalence class of x is termed the
halo of x, written halo(x). We write x ' 0 to denote x is infinitesimal or
zero.

Theorem 3.21. There is exactly one real number in the halo of any limited
hyperreal x. This is called the standard part of x, written st(x).

Proof. For a hyperreal x, consider the set Ax = {r ∈ R : r∗ ≤ x}. Since
x is limited, Ax is a non-empty subset of R that is bounded above, hence
has a least upper bound α. Note we have x ≥ α∗, i.e. x − α∗ ≥ 0. For
every positive real number r, we must have (α + r)∗ ≥ x, which implies
0 ≤ x − α∗ ≤ r∗, or x − α∗ ' 0. Thus there is atleast one real number
in the halo of every limited hyperreal. Suppose α and β are real numbers
in the halo of x, then we have x ' α∗ ' β∗, or α∗ − β∗ ' 0. But this is
possible only if α = β, hence the standard part of every limited hyperreal is
unique.
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Remark. At this point we shall stop writing r and r∗ to distinguish be-
tween r as a real and a hyperreal number respectively, writing just r for
both. However, the two remain to be distinct entities, and which one we are
referring to is usually clear from context.

We proceed to illustrate the appeal of hyperreal numbers when formulating
calculus:

3.5.2 Non-standard Calculus

Corollary 3.22.[8] R is Dedekind complete (every Cauchy sequence in R
converges in R.)

Proof. Let 〈an〉 be a Cauchy sequence in R, i.e. the terms get arbitrarily
close to each other. In particular, there exists a kε such that

∀m,n ∈ N, m, n > kε → |am − an| < 1.

Using the transfer principle, we can take the ∗-transform of this sentence,
i.e. for the hypersequence 〈an〉 : n ∈ N∗,

∀m,n ∈ N∗, m, n > k → |am − an| < 1.

Taking m to be the unlimited non-standard natural number ω, we see that
|aω − ak| < 1 i.e. aω is limited. Hence there exists a unique real number
a ' aω. Again, using the fact that 〈an〉 is Cauchy, for every ε > 0 there
exists a l > 0 such that

∀m,n ∈ N, m, n > l→ |am − an| <
ε

2
.

Taking the ∗-transform, we see

∀m,n ∈ N∗, m, n > l→ |am − an| <
ε

2
,

i.e. |an − aω| < ε
2 whenever n > l, and since aω ' a we must have

|an − a| < |an − aω|+ |aω − a| ≤
ε

2
+ infinitesimal < ε

whenever n > l. This is the exact condition for the sequence to converge to
a, hence we are done.
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The aω we defined above is in fact close to the hyperreal 〈an〉/U. This can
be shown as follows: for a′ = st(aω), consider the sequence

〈an − a′〉 = (a0 − a′, a1 − a′, a2 − a′, ...).

Since aω is the hyperreal limit of the sequence, for every non-zero real ε, the
sequence is greater than ε

2 only in finitely many places, hence |〈an − a′〉/U| < |ε|.
This implies 〈an〉/U ' a′ ' aω as desired. This gives us a neat interpreta-
tion of limits- every natural number ‘votes’ what the limit should be, and
the limit of the sequence is whichever real number wins the election.[15]

Definition 3.23. We define the non-standard limit of a sequence 〈an〉 of
real numbers as

lim
i→∞

∗ ai = st(〈an〉/U).

The notion of a limit of a function follows immediately in classical calculus:
we say

lim
x→a

∗ f(x) = L

if for every sequence ai → a we have f(ai) → L, or (using the definition
of functions on hyperreals), f(x) ' L whenever x ' a. Showing that this
is equivalent to the ε − δ definition is routine calculus and can be found
in any real analysis textbook. This leads to the very intuitive definition of
continuity:

Definition 3.24. f(x) is continuous at a ∈ R if and only if f(x) ' f(a)
whenever x ' a.

Can we provide an alternate definition of the limit of a function by consid-
ering an ultraproduct RR/U for some non-principle ultrafilter U on R, and
then using a voting interpretation? Will this be equivalent to the classical
definition?

Example 3.25. Continuity of polynomials: If f(x) = axn, a ∈ R, n ∈ N,
for infinitesimal ε we have

f(x+ ε) ' a(x+ ε)n ' axn + ε ·O(1) ' axn + ε

where O(1) represents a limited number. Clearly, f(x) ' f(c) whenever
x ' c, thus xn is continuous for n ∈ N. If f and g are two functions
continuous at c, we have

f(c+ ε) + g(c+ ε) ' f(c) + ε+ g(c) + ε ' f(c) + g(c)

i.e. sum of two continuous functions is continuous, thus showing polynomials
(and in fact all powerseries) are continuous.
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Differentiability and derivatives make use of two points on the curve to
determine the slope of the tangent. Classically this is done by bringing the
two points on a secant line arbitrarily close, but now we can do it with
infinitesimals.

Definition 3.26.[8] If a function f is defined at x ∈ R, then the real number
L is the derivative of f at x if and only if for every infinitesimal ε, f(x+ ε)
is defined and

f(x+ ε)− f(x)

ε
' L.

Example 3.27. Derivative of sine: for x ∈ R and an infinitesimal ε,

sin(x+ ε)− sinx

ε
=

sinx cos ε+ cosx sin ε− sinx

ε
' cosx

since sin ε = ε− ε3

3! + ... ' ε and cos ε = 1− ε2

2! + ... ' 1.
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