A Quick Introduction to Complex Tori

Parth Shimpi

§0.1 About. This is a short summary of a lecture course on Abelian varieties by Tony Scholl. Complete notes for the said course can be found at https://zb260.user.srcf.net/notes/III/abel.pdf. These notes were written as a supplement to the notes from a lecture course on Hodge theory (https://pas201.user. srcf.net/documents/2023-ukag-hodge-theory.pdf), and should be read as such.

§1 Complex tori and their cohomology

It is a theorem that all commutative compact connected \mathbb{R}-Lie groups arise as real tori, i.e. quotients V / Λ where V is a real vector space and $\Lambda \subset \mathrm{V}$ is a lattice (free \mathbb{Z}-module generated by a basis of V). If in addition we fix an isomorphism $V \cong \mathbb{C}^{n}$, then the quotient V / Λ is naturally a \mathbb{C}-manifold and the group operation is holomorphic. Complex Lie groups arising in this way are called complex tori.

Proposition 1.1. Any compact connected \mathbb{C}-Lie group is a complex torus. In particular it is commutative.
If $\mathrm{T}=\mathrm{V} / \Lambda$ is a complex torus, the corresponding lattice Λ is called the period of T . Note that V is the universal cover of the complex torus $\mathrm{T}=\mathrm{V}$, and since the fundamental group of a torus is Abelian we have natural isomorphisms $\pi_{1}(T, 0) \cong H_{1}(T, \mathbb{Z}) \cong \Lambda$.

Remark 1.2. It is not hard to show that two tori V / Λ and $\mathrm{V}^{\prime} / \Lambda^{\prime}$ are isomorphic if and only if there is a \mathbb{C}-linear map $\mathrm{V} \rightarrow \mathrm{V}^{\prime}$ that restricts to an isomorphism $\Lambda \rightarrow \Lambda^{\prime}$. Thus every complex torus has form $\mathbb{C}^{\mathrm{d}} /(\mathbb{Z} \oplus M \mathbb{Z})$ for some $d \times d$ complex matrix M (the period matrix) such that $\operatorname{Im} M$ has full rank. For instance, every elliptic curve is given by $\mathbb{C} /(\mathbb{Z} \oplus \tau \mathbb{Z})$ for $\tau \in \mathbb{C} \backslash \mathbb{R}$.
§1.1 Hodge theory of tori. Let $T=V / \Lambda$ be a d-dimensional complex torus. Since $T \cong\left(S^{1}\right)^{2 d}$, the Kunneth formula gives an isomorphism $H^{n}(T, \mathbb{Z}) \cong \Lambda^{n} \operatorname{Hom}(\Lambda, \mathbb{Z})$. Since V is a \mathbb{C}-vector space, these spaces come naturally equipped with a pure Hodge structure given as follows. Recall Λ is generated by an \mathbb{R}-basis of \vee, so we have natural isomorphisms

$$
H^{n}(X, \mathbb{C}) \cong H^{n}(X, \mathbb{Z} \otimes \mathbb{Z}) \cong \Lambda^{n} \operatorname{Hom}(\Lambda, \mathbb{C}) \cong \Lambda^{n} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C}) \cong \bigoplus_{p+q=n} \Lambda^{p} V^{\sim} \otimes \Lambda^{q} \overline{V^{2}}
$$

where the final isomorphism comes from observing the decomposition $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})=\mathrm{V}^{2} \oplus \overline{\mathrm{~V}}^{2}$ into spaces of \mathbb{C}-linear and \mathbb{C}-anti-linear maps. Thus we declare $H^{p, q}(X)=\Lambda^{p} V^{\nu} \otimes \Lambda^{q} \overline{V^{2}}$.
Theorem 1.3 (Hodge decomposition for tori). The spaces $\mathrm{H}^{\mathrm{p}, \mathrm{q}}(\mathrm{T})$ form an integral Hodge structure on $\mathrm{H}^{\mathrm{n}}(\mathrm{T}, \mathbb{Z})$.
Hodge decomposition doesn't hold for arbitrary complex manifolds; one typically requires extra structure. When there is a Kähler metric, this structure is the presence of harmonic forms. On a torus, it is the group structure as we shall now see.
Say a smooth complex n-form ω is invariant if $(+y)^{*} \omega=\omega$ for all $y \in T$. Write $\operatorname{Inv}^{n}(T)$ for the space of invariant n-forms, and note that pulling back along the map $\pi: \mathrm{V} \rightarrow \mathrm{T}$ induces a bijection between invariant n-forms on T and linear n-forms on V (i.e. n-forms $d f_{1} \wedge \ldots \wedge d f_{n}$ for \mathbb{R}-linear functions $f_{1}, \ldots, f_{n}: V \rightarrow \mathbb{C}$). Thus we have $\operatorname{Inv}^{n}(T) \cong \Lambda^{n} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$. The following proposition identifies this space with the de Rham cohomology.
Proposition 1.4. Invariant n-forms on T are closed, and every cohomology class in $\mathrm{H}^{\bullet}(\mathrm{T}, \mathbb{C})$ can be represented by a unique invariant form, giving an isomorphism $\operatorname{Inv}^{n}(\mathrm{~T}) \cong \mathrm{H}^{\mathrm{n}}(\mathrm{X}, \mathbb{C})$.

Choosing \mathbb{C}-linear coordinates $z_{1}, \ldots, z_{\mathrm{d}} \in \mathrm{V}^{2}$, it follows that every (p, q)-class is uniquely represented by an invariant form $\sum \lambda_{I J} \mathrm{~d} z_{\mathrm{I}} \wedge \mathrm{d} \overline{\mathrm{z}}_{\mathrm{J}}$ for scalars λ_{IJ}. In particular,
Theorem 1.5. There is a natural isomorphism $H^{p, q}(X) \cong H^{p}\left(T, \Omega_{T}^{q}\right)$.
Sketch. One can show that the holomorphic cotangent bundle of T is trivial, and hence $\Omega_{T}^{p} \cong \sigma_{T} \otimes H^{p, 0}(T)$. This reduces to the case $p=0$, since we have $H^{q}\left(T, \Omega_{T}^{p}\right) \cong H^{q}\left(T, \sigma_{T}\right) \otimes H^{p, 0}(T)$. Now the inclusion $\mathbb{C} \hookrightarrow \sigma_{T}$ induces a map $H^{p}(T, \mathbb{C}) \rightarrow \mathrm{H}^{p}\left(\mathrm{~T}, \mathrm{O}_{\mathrm{T}}\right)$, and one uses Fourier analysis to show this is precisely the projection $\mathrm{H}^{\mathrm{p}}(\mathrm{T},(\mathrm{C})) \rightarrow \mathrm{H}^{\mathrm{p}, 0}(\mathrm{~T})$.

§2 Line bundles on tori

§2.1 Riemann forms. Note $H^{2}(T, \mathbb{Z})=\Lambda^{2} \operatorname{Hom}(\Lambda, \mathbb{Z})$ is naturally the space of alternating integral 2-forms on Λ, or equivalently the space of alternating 2 -forms $V \times V \rightarrow \mathbb{R}$ that are integer-valued on $\Lambda \times \Lambda$.

Definition 2.1. A Riemann form on the torus V / Λ is a Hermitian form $\mathrm{H}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{C}$ such that the alternating form $\operatorname{ImH}: V \times V \rightarrow \mathbb{R}$ is integer valued on $\Lambda \times \Lambda$.

It can be shown that Riemann forms on $\mathrm{T}=\mathrm{V} / \Lambda$ are uniquely determined by their imaginary part, which from the above discussion is an element of $\mathrm{H}^{2}(\mathrm{~T}, \mathbb{Z})$ that satisfies the Riemann period relation $\operatorname{Im}(\mathfrak{i} v, \mathfrak{i} w)=\operatorname{Im}(v, w)$.

Proposition 2.2. The space of Riemann forms is precisely the Néron-Severi group $\mathrm{NS}(\mathrm{T}) \subset \mathrm{H}^{2}(\mathrm{~T}, \mathbb{Z})$, i.e. the image of the first Chern map $\mathrm{c}_{1}: \operatorname{Pic}(\mathrm{T}) \rightarrow \mathrm{H}^{2}(\mathrm{~T}, \mathbb{Z})$. Moreover, this correspondence restricts to a bijection between ample Chern classes and positive definite Riemann forms (i.e. Riemann forms with positive definite imaginary part).
Definition 2.3. A polarisation of $\mathrm{T}=\mathrm{V} / \Lambda$ is the choice of a positive definite Riemann form. A polarisation H is principal if $\operatorname{det}\left(\left.\operatorname{ImH}\right|_{\wedge}\right)=1$, or equivalently if Λ admits a basis in which ImH is given by $\left(\begin{array}{cc}0 & \text { Id } \\ -\operatorname{Id} & 0\end{array}\right)$.

Thus a complex torus is projective if and only if it admits a polarisation. Such complex tori are called Abelian varieties. By proposition 1.1, Abelian varieties are precisely projective group-schemes over \mathbb{C}. In fact, any complete group variety over \mathbb{C} can be shown to be projective, and hence Abelian.
§2.2 The Appel-Humbert theorem. Since NS(T) is free for a complex torus, the exact sequence of groups $0 \rightarrow \operatorname{Pic}^{0} \mathrm{~T} \rightarrow \operatorname{Pic}(\mathrm{~T}) \rightarrow \mathrm{NS}(\mathrm{X}) \rightarrow 0$ splits (non-canonically). This can be used to give an explicit description of $\operatorname{Pic}(T)$ as follows- first note that $\operatorname{Pic}^{0}(T)$ is the cokernel of the map $j: H^{1}(T, \mathbb{Z}) \rightarrow H^{1}\left(T, \Theta_{T}\right)$ induced from the exponential exact sequence. For $T=V / \Lambda$, we have that $H^{1}\left(T, \sigma_{T}\right)=H^{0,1}(T)=\overline{V^{v}}$ and the image of j is a lattice. Thus $\hat{\mathrm{T}}:=\operatorname{Pic}^{0}(\mathrm{~T})$ is also a complex torus, called the dual of T .
It can be shown that there is an isomorphism $\widehat{T} \cong \operatorname{Hom}(\Lambda, U(1))$, i.e. the dual torus is the character-group of the period of T. One can also define the group $\mathscr{P}(\mathrm{T})$ of twisted semi-characters, which are given by pairs (H, α) for a Riemann form H and a function $\alpha: \Lambda \rightarrow \mathrm{U}(1)$ satisfying $\alpha(\gamma+\delta)=\alpha(\gamma) \cdot \alpha(\delta) \cdot \exp (i \pi \cdot \operatorname{ImH}(\gamma, \delta))$.
Theorem 2.4 (Appel-Humbert). There is an isomorphism $\operatorname{Pic}(\mathrm{T}) \cong \mathscr{P}(\mathrm{T})$ compatible with the identifications $\operatorname{Pic}^{0}(\mathrm{~T}) \cong \operatorname{Hom}(\Lambda, \mathrm{U}(1))$ and $\mathrm{NS}(\mathrm{T}) \cong\{$ Riemann forms $\}$.

Sketch. Given a pair $(\mathrm{H}, \alpha) \in \mathscr{P}(\mathrm{T})$, one uses it to describe an action $\mathrm{U}(1) \circlearrowright \mathbb{C} \times \mathrm{V}$. The induced map $(\mathbb{C} \times \mathrm{V}) / \mathrm{U}(1) \rightarrow \mathrm{V} / \Lambda$ gives a holomorphic line bundle [see Mum85, section I.2].

Remark 2.5. For a point $x \in T$ in the complex torus and a line bundle $L \in \operatorname{Pic}(T)$, the bundle $(+x)^{*} L \otimes L^{\vee}$ has degree zero and hence we have a map $\phi_{\mathrm{L}}: \mathrm{T} \rightarrow \hat{\mathrm{T}}$. This is a holomorphic homomorphism of complex tori, and the line bundle L is ample if and only if $\mathrm{H}^{0}(\mathrm{~T}, \mathrm{~L}) \neq 0$ and ϕ_{L} is an isogeny (i.e. a surjective homomorphism).
$\S 2.3$ The theta divisor. The sections of the bundle associated to $(\mathrm{H}, \alpha) \in \mathscr{P}(\mathrm{T})$ constructed in theorem 2.4 naturally corresond to holomorphic functions on V that are invariant under the given action of $\mathrm{U}(1)$. This gives a functional equation, the solutions of which are called theta-functions of (H, α). The vanishing locus of a theta function gives a divisor corresponding to this bundle, called a theta divisor.
Proposition 2.6 [Mum85, p. 26]. If (H, α) is a polarisation on the torus V / Λ, then associated space of theta functions has dimension equal to $\sqrt{\operatorname{det}\left(\left.\operatorname{ImH}\right|_{\wedge}\right)}$.

Thus choosing a polarisation on T is equivalent to choosing an ample line bundle L , and this polarisation is principal if and only if $\operatorname{dimH}^{0}(\mathrm{~T}, \mathrm{~L})=\chi(\mathrm{L})=1$ (where we note that all higher cohomologies of L are trivial by the Kodaira vanishing theorem.)
Corollary 2.7. Every principally polarised Abelian variety has a unique associated theta divisor up to translation.
Proof. Suppose Θ_{1}, Θ_{2} are two theta divisors associated to a principal polarisation (H, α), then note that the line bundle $\mathcal{O}\left(\Theta_{1}-\Theta_{2}\right)$ has trivial Chern class. Now $L=\mathcal{O}\left(\Theta_{2}\right)$ is ample, hence the map $\phi_{\mathrm{L}}: T \rightarrow \operatorname{Pic}^{0}(T)$ is an isogeny. In particular, it is surjective so there is an $x \in T$ such that $\mathcal{O}\left(\Theta_{1}-\Theta_{2}\right)=(+x)^{*} \mathcal{O}\left(\Theta_{2}\right) \otimes \mathcal{O}\left(-\Theta_{2}\right)$. It follows that $\mathcal{O}\left(\Theta_{1}\right)=(+x)^{*} \mathcal{O}\left(\Theta_{2}\right)$, i.e. Θ_{1} is linearly equivalent to $\Theta_{2}+x$. But (H, α) is principal, so the associated line bundle has a unique global section (i.e. a unique corresponding divisor). Thus $\Theta_{1}=\Theta_{2}+x$.

References

[Mum85] David Mumford. Abelian Varieties. Tata Institute of Fundamental Research, 1985 (cit. on p. 2).

