
Enumerative geometry of K3 surfaces

Based on a lecture series by Qaasim Shafi.

December 2023

Enumerative geometry starts off from the very classical problem of counting lines in a variety. We follow two
parallel stories– first for a K3 surface, and then for projective space with additional boundary conditions. The
count of rational curves on a K3 surface is given by the Yau–Zaslow formula in terms of a modular form, and
the counts of higher genus curves is determined by the counts of rational curves. Abstracting the intersection-
theoretic arguments shows that in fact we often do not count curves, but instead get ‘generalised curve counts’
called Gromov–Witten invariants which are better behaved under deformations. This deformation invariance
is exploited when there are imposed tangency conditions on the count, to degenerate the variety and reduce
the problem to a combinatorial count. Throughout, we see how intuition from the K3 count feeds into this
general theory, in particular we are able to ‘guess’ the relationship between counts of rational curves and those
of higher genus curves.

§ 0.1 About. This course on enumerative geometry was a part of a Winter School for students and early career
researchers, organised by the UK Algebraic Geometry Network. The lectures were delivered in-person in the
University of Warwick, and were transcribed by Parth Shimpi. These notes have undergone several amendments
and are not a verbatim recall of the lectures, therefore discretion is advised when using this material. They are
available online at https://pas201.user.srcf.net/documents/2023-ukag-enum-geom.pdf. All errors
and corrections should be communicated to by email to parth.shimpi@glasgow.ac.uk.

Parts of this course are based on a lecture by Rahul Pandharipande (https://www.youtube.com/watch?v=
TBoonBCDRa8).

§ 1 Rational curves on K3 surfaces

How many lines on a smooth hypersurface X ⊂ P3 of degree d? If d = 2, then the surface is a quadric
(isomorphic to P1 × P1) and is covered by lines– in particular there are two sets transverse rulings. If d = 3,
then the surface is cubic and famously contains 27 lines– we have lost almost all the lines! More generally, all
surfaces of degree d ⩽ 3 are rational and hence contain plenty of rational curves. On the other hand if d ⩾ 5,
it can be shown that X has no lines and no rational curves of any degree.

What about d = 4? This case plays a transitional role similar to the one played by elliptic curves for the
arithmetic problem of counting Q-points on curves. Suppose X is defined by a degree 4 polynomial f4. By
definition, a degree e rational curve in X is a map P1 → X defined by three homogeneous polynomials
p0, ..., p3 of degree e satisfying f4(p0, ..., p3) = 0. Hence we may try to naïvely count the dimension of the
space of degree e rational curves in X as

dim{degree e rational curves in P1}

( 4e+ 4︸ ︷︷ ︸
[Each pi has e+ 1 coefficients]

− 1︸︷︷︸
[Projectivise]

− 3︸︷︷︸
[dimAutP1]

)−

dim{constraints to lie on X}

( 4e+ 1︸ ︷︷ ︸
[A degree 4e homogeneous polynomial should identically vanish]

) = −1.

Thus the dimension count suggests there are no rational curves. However, one can very explicitly find rational
curves by showing that X intersects a tri-tangent plane in a degree 4 curve with three nodes, i.e. a rational
curve! Thus some of the constraints in our dimension count do not intersect transversely.

§ 1.1 What makes degree 4 interesting?. It is because quartic surfaces sit in a family of algebraic varieties
that obey the Calabi–Yau condition. In these situations, curve counting is special with the possibility of exact
solutions in all genera– in dimension one, Calabi–Yau varieties are precisely the elliptic curves and the counts
relate to modular forms. Calabi–Yau 3-folds are an active area of current research, with exact counts for genus
0 given by mirror symmetry.

Definition 1.1. An algebraic K3 surface X is a smooth projective C-surface that satisfies H1(X,𝒪X) = 0 and has
trivial canonical class.

The prime example, of course, are quartic hypersurfaces in P3. All K3 surfaces are diffeomorphic as smooth
R-manifolds, with topological Euler characteristic 24.
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§ 1.2 Rational curves via fibrations. It can be shown that algebraic K3 surfaces arise in families indexed by
h = 1, 2, 3, ... such that any surface in the family h admits a complete linear system of dimension h, giving
a map X → Ph. A general element in this linear system can be shown to have genus h. Hence if h = 1 (for
example if X is the Kummer surface), this map is an elliptic fibration.

Deleting the singular fibers, we obtain a locally trivial fibration by Ehresmann’s lemma and hence we have∑
C a singular fiber

χtop(C) = χtop(X) = 24.

But singular fibers in this case are rational, hence X has at least 24 rational curves (for simplicity, we assume
all curves are reduced, irreducible, and at worst nodal.)

Likewise, if h = 2 then the map X → P2 is a double cover branched over a sextic curve C ⊂ P2. Such a curve
has 324 bitangent lines, each of which pulls back to a fiber with two nodes (again rational, since a generic fiber
has genus 2). If h = 3, X ↪→ P3 is a quartic hypersurface and the rational elements in the linear system come
from tri-tangent planes like we discussed before. There are precisely 3200 such planes.

§ 1.3 The Yau–Zaslow formula. Write N0,h for the count of genus 0 curves in the linear system associated to
a general algebraic K3 surface. The data of h fixes a cohomology class β ∈ Pic(X) = H2(X,Z) ∩H1,1(X) with
β2 = 2h− 2, and we are counting (stable) curves P1 → X with image in this cohomology class. From the above
discussion, the first few values of N0,h are 24, 324, 3200, .... Yau and Zaslow spotted that these coincide with
the coefficients of a well-known modular form, and conjectured the following.

Theorem 1.2 (Yau–Zaslow formula). Writing ∆(z) = (
∏

n⩾1(1− zn)24)−1 for the discriminant modular form, we
have the identity ∑

h⩾0

N0,h · zh =
z

∆(z)
= 1+ 24z+ 324z2 + ...

This was proven independently Beauville and Bryan–Leung. How might one prove this? Inspired by the con-
struction for h = 1, we will build another fibration. The base is the linear system Ph, and the total space is the
compactified Jacobian of the universal curve 𝒞 ↪→ Ph i.e. the fiber over a smooth curve C ∈ Ph is the Jacobian
Jac(C). The space is compactified to include nodal fibers, via a generalised Jacobian construction (for h = 1

this is the same fibration we had, since an elliptic curve is its own Jacobian.)

Now the Jacobian Jac(C) has trivial Euler characteristic if C is smooth or has genuine genus (eg. the first two
fibers in the picture), while χtop(JacC) = 1 if C is rational. Thus we have

N0,h =
∑

rational curves C

χtop(JacC) = χtop(Jac(𝒞/Ph)).
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Moreover, by a result of Huybrechts we have that Jac(𝒞/Ph) is birational to the Hilbert scheme Hilbh(X), and
the Euler characteristic of the latter has been computed by Göttsche as the coefficient of zh in z

∆(z) . A result
of Batyrev–Kontsevich shows that two birational Calabi–Yau manifolds have the same Betti numbers, which
concludes our argument.

§ 2 Introduction to Gromov–Witten theory

The way we computed the counts on a K3 surface exploited the specific geometry in the situation. We will now
describe a more general framework for counting curves, which involves two steps. First, we build a moduli space
of curves in X of a fixed type (genus, cohomology class)– if this has dimension zero then we obtain an honest
count, otherwise we impose natural conditions by doing intersection theory on this moduli space.

Example 2.1. There are infinitely many conics (i.e. rational curves of degree 2) in P2. These are parametrised
by the moduli space ℳ0,2P2 = P5, since a conic is determined by a degree 2 homogeneous polynomial in three
variables. Thus to obtain a count, we may impose the condition that our curve passes through five fixed points
{p1, ..., p5}. Each point gives a linear constraint, and hence if the five points are in general position then there
is a unique conic passing through them (corresponding to the intersection of the five general hyperplanes.)

As a general principle, the count should not depend on the specific choice of points. To make this rigorous,
we replace each hyperplane Hi = {conics through pi} with its (Chow) homology class [Hi], and then define the
intersection to be given by cup products of Poincaré duals

[H1] · ... · [H5] =

∫
[P5]

PD[H1] ∪ ... ∪ PD[H5] = 1.

The count then depends only on the cohomology classes of the constraints. Theories of modern enumerative
geometry follow this principle.

Remark 2.2. In general, there are two to think about curves in X– via parametrisations (i.e. as maps C → X), or
via equations. Thus for curves in P2 one might think of parametrisations [z : w] 7→ [z2 : zw : w2] or equations
V(xz−y2). The first approach leads to Gromov–Witten theory, while the latter gives rise to Donaldson–Thomas
theory.

Thus to do Gromov–Witten theory, we first fix a genus g ⩾ 0 and a cohomology class β ∈ H2(X,Z), and ‘guess’
the moduli space

ℳg(X,β) = {C
f−→ X | C a smooth curve of genus g, f∗[C] = β}.

However, this naïve moduli space is often non-compact (and hence unsuitable for intersection theory.) To get
a compactification, we have to allow maps f from nodal curves which may contract components. The well-
behaved maps of this kind are called stable (defined later). Thus our space of interest (now compact) is

ℳg(X,β) = {C
f−→ X | C an at worst nodal curve of genus g, f stable, f∗[C] = β}.
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To impose constraints, it is also often convenient to consider curves with n ⩾ 0 marked points p1, ..., pn ∈ C,
and form the moduli space ℳg,n(X,β) of stable maps f : C → X with prescribed behaviour (e.g. tangency
conditions) at f(pi).

Definition 2.3. Let C be a nodal curve of genus g with n marked points. A map f : C → X is stable if every
rational component contracted by f has at least three nodes or marked points, and every contracted elliptic
component has at least one node or marked point.

We have succeeded, by obtaining a compact moduli space ℳg,n(X,β). At what cost? We have added way more
junk– the complement ℳg,n(X,β)\ℳg,n(X,β) is often massive and has components of dimension (way) higher
than the original space. To make matters worse, ℳg,n(X,β) often does not have a fundamental class– we have
nothing to integrate over for intersection theory!

The second of these problems is remedied by introducing a virtual fundamental class [ℳg,n(X,β)]
vir, if we are

lucky this coincides with the fundamental class (this happens, for instance, for ℳ0,n(PN, d). If not, we pretend
the compactified moduli space of interestℳ is cut out by r equations in a smooth ambient space Y of dimension
N. The excess junk of dimension > N − r arises precisely because the intersection is not transverse in places,
so we perturb these equations to make it transverse and think of [ℳ]vir ∈ HN−r(ℳ) as the fundamental class
of this perturbed space.

Example 2.4. Suppose ℳ = V(xz, yz) ⊂ P3 is the union of a line L = V(x, y) (the space of interest) and a
plane V(z) (the junk). Perturbing the equations, we obtain V(xz− ϵy2, yz− ϵxw) which is the union of the line
L and a twisted cubic Cϵ : [u, v] 7→ (v3, ϵuv2, ϵ2u2v, ϵ3u3). In the limit, we have a plane cubic C0 ⊂ V(z) and
the virtual fundamental class of ℳ is [ℳ]vir = [L] + [C0].

Then the Gromov–Witten invariants are defined as integrals of the form
∫
[ℳg,n(X,β)]vir [constraints] where the

constraints usually naturally arise from the setting of the problem and live in the same dimension as the virtual
fundamental class. Because the moduli space has so much junk and the fundamental class is virtual, these
are not really curve counts any more. However, they are better behaved in other ways– they are deformation
invariant, and naturally arise in mirror symmetry. And often, they do help compute actual curve counts.
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§ 2.1 Gromov–Witten theory of a K3 surface. Let X be a K3 surface and β ∈ PicX a primitive class with
β2 = 2h − 2. Rather annoyingly, the virtual fundamental class [ℳg(X,β)]

vir is zero for all g. This is related to
the “−1” dimension count we obtained earlier, though we do not go into the details. The fix here is to define
a ‘reduced virtual fundamental class’ [ℳg(X,β)]

red, which is non-zero and lives in Hg(ℳg(X,β)). In particular
for rational curves this class has degree zero, and the curve counts are simply

N0,h =

∫
[ℳg(X,β)]red

1.

For g > 0 the curve count is infinite, since the virtual dimension of the moduli space is positive. To get a
finite number, we impose a g-dimensional condition λg to obtain a count Ng,h (this condition is vacuous for
g = 0.) Roughly speaking, this condition arises from a rank g vector bundle Eg → ℳg(X,β) whose fiber over
a stable curve C is given by H0(C,ωC). Thus these constraints are sufficiently natural, and we get meaningful
invariants of X.

The Yau–Zaslow formula has a generalisation in higher genera, called the KKV conjecture. This asserts that
generating series for Ng,h lie in the ring of quasi-modular forms, and was proven by Maulik, Pandharipande,
and Thomas.

§ 3 Logarithmic Gromov–Witten theory

To see how marked points play a role in Gromov–Witten theory, we will now try to answer questions of
the flavour ‘how many (stable) curves of fixed type in a variety X have prescribed tangency conditions to a
given divisor D ⊂ X with simple normal crossings?’ Concretely, let us count degree d plane rational curves
that are maximally tangent to each axis. Thus we are looking at degree d maps f : P1 → P2 such that
f(P1) ∩ V(x) = d · f[0 : 1] and likewise for the other markings.

In general, we fix g, n, β as before and α a collection of integers giving the desired tangency of the ith marking
to D. Consider the moduli space

ℳg,α(X|D,β) =
{
smooth curves C f−→ X of genus g and degree β with tangency α with D

}
.

Is this compact? No– as before, we have only allowed smooth curves so we fix that by asking for stable nodal
curves instead. The resulting space is still non-compact, because it does not include curves that degenerate into
D. For example, consider the curve given by [z0 : z1 : t(z0 − z1)] as t → 0. In the limit, the curve degenerates
into D as shown.

Thus we need a new fix for this problem. For this, we will need to think torically/tropically, by ‘discretising’
each of the players X,C, f in the problem.
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§ 3.1 The tropicalisation game. In general, we follow the following rules: the pair X,D is replaced by the
associated toric fan, and the curve C becomes a graph with vertices representing irreducible components,
edges representing nodes, and ‘floating’ edges corresponding to other markings.

The map f : C → X is then represented by a linear embedding of the graph, where each vertex maps into the
cone of the toric stratum in which the curve generically sits. The floating edges are parallel to the ray which
gives the component of D on which the corresponding marked point lies.

Thus for the family of curves [z0 : z1 : t(z0 − z1)], we have

§ 3.2 What’s in the moduli space?. Say vertex in the degenerated curve is balanced if the sum of all outgoing
vectors is zero. To first approximation, we add into our moduli space those stable maps whose discretisation is
balanced. For example, the following map is detected.

The resulting space ℳ
log
g,α(X|D,β) ⊃ Mg,α(X|D,β) is compact, and is called the moduli space of stable logarith-

mic maps. This, as before, does not have a fundamental class but does have a virtual one. Doing intersection
theory on the space then gives logarithmic Gromov–Witten invariants.

§ 3.3 Curve counts using log Gromov–Witten theory. To count general curves (and hence bring log
Gromov–Witten theory closer to the ordinary one), we can enforce generic tangency conditions with the divisor.
For example, a general degree d curve in P2 looks like
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so we impose a generic tangency constraint by considering P1 with 3d marked points. This gives a 3d − 1

dimensional space of generic degree d curves, so by imposing additional conditions (e.g. requiring the curve
to pass through 3d− 1 fixed points p1, ..., p3d−1 ∈ P2) we can define the Gromov–Witten invariant

NP2

0,d =

∫
[ℳ0,α(P2|D,d)]vir

[condition to pass through p1, ..., p3d−1].

It turns out the problem is sufficiently nice and this is equal to the number of rational degree d curves in
P2 through 3d − 1 generic points. Moreover, it can be computed combinatorially by using the the following
theorem and other similar results.

Theorem 3.1 (Mikhalkin). The number NP2

0,d is equal to the number of “discretised curves” in the toric fan of P2

with d unbounded arrows in each divisorial direction, and passing through through 3d− 1 points in R2.

Thus for example if d = 1, there is a unique balanced curve passing through two points fixed points in R2 with
balanced vertices and one unbounded arrow in each direction. This, of course, corresponds to the fact that
there is a unique rational curve through two fixed points in P2.

§ 4 Counts in higher genus

We have seen that generalised counts of rational curves (i.e. Gromov–Witten invariants for genus 0) on P2 are
related to tropical curve counts. We will now see how this generalises to statements about higher genus curves.
In general forming a logarithmic moduli space of higher genus curves is hard, so we first rephrase the genus 0
problem in purely tropical terms.

Recall the goal was to measure NP2

0,d = #{plane rational curves of degree d through 3d− 1 points}, and we did
this by defining a combinatorial gadget. We make this precise. For this, fix the data ∆d = {(−1, 0), d..., (−1, 0), (0,−1), d..., (0,−1), (1, 1), d..., (1, 1)}.

Definition 4.1. A rational tropical curve of degree ∆d is given by

(i) a graph Γ of genus zero with vertices, bounded edges, and 3d unbounded edges,

(ii) a real number for each bounded edge called the length, and

(iii) a map h : Γ → R2 such that each unbounded edge is parallel to the corresponding vector in ∆d and the
bounded edges are mapped to segments of the specified length, and the sum of outgoing edges at each
vertex is zero.

Then Milkhalkin shows that NP2

0,d is equal to the number of (weighted) rational tropical curves of degree ∆d

through 3d− 1 points. Thus for example, if d = 2 then five points determine a unique conic as shown.
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§ 4.1 Why should you be able to relate curve counts to tropical curves?. Of course we know that NP2

0,d

is secretly a logarithmic Gromov–Witten invariant and in the logarithmic moduli space, this tropicalisation
procedure produces tropical curves. The principle at play here is that invariants of a space should be related
to those of its degenerations, which are precisely encoded by tropical curves.

Then the curve count we require can be computed from the counts in each segment, and these correspond to
multiplicity of the vertices of the tropical curve.

§ 4.2 Higher genus tropical curves. Thus to compute log Gromov–Witten invariants for positive genus, we
begin by asking what a higher genus generalisation of tropical curve would be. The answer comes from
examining the higher genus case of K3 surfaces, which was solved earlier.

For K3 surfaces, Göttsche and Shende produce series N0,h(q) that evaluates the invariant N0,h at q = 1. Com-
bining this with Maulik–Pandharipande–Thomas’ solution to the KKV conjecture, we have the identity∑

g⩾0

Ng,hu
2g−2 = (−1)(q

1
2 − q− 1

2 )−2N0,h(q) at q = eiu,

i.e. higher genus counts Ng,h are computed by a series N0,h(q).

But Göttsche and Shende also give a very similar series NP2

0,d(q), so mimicking the above formula we guess
that there are higher genus tropical curve counts NP2

g,d satisfying∑
g⩾0

NP2

g,du
2g−2+3d = (i(q

1
2 − q− 1

2 ))3d−2N0,d(q) at q = eiu.

Bousseau was able to give a precise definition of higher genus invariant NP2

g,d with an appropriate “λg condition”
such that the above formula holds. Moreover in analogy with the K3 case, analogous to the K3 case, these
invariants are related to higher genus tropical curve counts with refined multiplicity. The details of this are
beyond the scope of these lectures.
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