
Kuznetsov components of Fano varieties

Based on a Lecture series by Arend Bayer.

December 2023

We will discuss methods to study Kuznetsov components of derived categories of coherent sheaves, using
moduli theory and stability spaces. Along the way we will look at classical questions regarding invariants and
techniques surrounding Fano varieties.

§ 0.1 About. This course on Fano varieties was a part of a Winter School for students and early career
researchers, organised by the UK Algebraic Geometry Network. The lectures were delivered in-person in the
University of Warwick, and were transcribed by Parth Shimpi. These notes have undergone several amendments
and are not a verbatim recall of the lectures, therefore discretion is advised when using this material. They are
available online at https://pas201.user.srcf.net/documents/2023-ukag-kuznetsov.pdf. All errors
and corrections should be communicated to by email to parth.shimpi@glasgow.ac.uk.

§ 1 Low–dimensional Fano varieties

Definition 1.1. A smooth variety X/C is called Fano if the anticanonical bundle 𝒪(−KX) =
∧topTX is ample.

Thus the only one-dimensional Fano variety is P1.

More generally, all projective spaces and complete intersections of low degree in projective spaces are Fano. In
particular, any complete intersection X ⊂ Pn+N cut out by equations of degrees d1, ..., dN is Fano if and only
if
∑

i di 6 n +N. For example, this can be used to show that all Fano 2-folds (i.e. del Pezzo surfaces) arise as
P2 blown up at 6 8 points, or as the smooth quadric P1 × P1.

Example 1.2 (Grassmannians). Generalising the example of projective space, the Grassmannian G = Gr(n,m)

parametrising n-dimensional subspaces Un ⊂ Cm is Fano. To see why, we will compute its tangent bun-
dle. Note we have the tautological exact sequence of vector bundles Un ↪→ 𝒪⊕m

X � Qm−n, and that at
a point p ∈ X corresponding to Un ↪→ Cm � Qm−n the tangent space TpX is given by elements of
Hom(Un,Qm−n) i.e. deformations of the subspace Un ↪→ Cm up to automorphisms of Un. Thus the tan-
gent bundle is TX = Hom(Un,Qm−n), and we have

∧topTX = (
∧topUň )⊗(m−n) ⊗ (

∧topQm−n)
⊗n. But the

tautological exact sequence shows
∧topUn = (

∧topQm−n)
−1, and the Plücker embedding G ↪→ P(

∧
nCm)

shows
∧topUn = 𝒪(1) is ample. We conclude that so is

∧topTX = 𝒪X(m).

Likewise, low degree subvarieties of Grassmannians are Fano, and this gives us examples of Fano varieties in
dimensions three and four. For example, Gr(2, 4) ⊂ P5 is a smooth quadric 4-fold. Intersecting Gr(2, 5) ⊂ P9

with three hyperplanes, we get the Fano 3-fold Y5 = Gr(2, 5) ∩ P6. Likewise we have the Gushel–Mukai 3-fold
X10 obtained by intersecting Gr(2, 5) ⊂ P9 with two hyperplanes and a quadric. Another similar example is
X14 = Gr(2, 6) ∩ P9 ⊂ P14.

§ 1.1 Deformation families. Fano varieties of fixed dimension are bounded, i.e. occur in finitely many deforma-
tion families. In low dimensions, there are fairly explicit unirational moduli spaces while the moduli spaces in
higher dimensions are studied using K-stability.

For Fano 3-folds, there are 105 families. Most have relatively low Picard rank– this is because the behaviour
is fairly complicated for high Picard ranks and in fact sufficiently high Picard ranks simply become difficult
to realise. For instance the only way to obtain a Fano 3-fold of Picard rank 8 is the trivial way, by taking the
product of P1 with a del Pezzo surface.

Thus we focus on the simplest case, that of Picard rank 1. Such Fano 3-folds are called prime, and have a
canonical ample divisor H (called the fundamental divisor ) which generates PicX. We say the index of X is the
integer iX satisfying KX+ iX ·H ≡ 0, and the degree of X is the self-intersection dX = −K3

X. It is also convenient
to introduce the number gX = 1

2
(dX + 2), called the genus (the reason for this terminology will be explained

later.)

Remark 1.3. If X is a prime Fano 3-fold, then we must have 1 6 iX 6 4. Indeed the lower bound comes from
the Fano condition. To find the upper bound, note that if S ∈ |H| is a general element in the linear system
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then KS = −(iX − 1)H|S by adjunction. In particular if iX > 1 then S is a del Pezzo surface and we have the
well-known bound

1 6 K2
S = (iX − 1)2H3 6 9.

which shows iX cannot exceed 4. Note iX = 4 forces H3 = 1, and the only such Fano 3-fold is P3.

The deformation type of X is determined by iX and dX, so it suffices to compute the possible values of dX for
each iX ∈ {1, 2, 3, 4}. For iX = 3 the only possibility is H3 = 2 i.e. dX = 54 (H3 = 1 is ruled out since the genus
is an integer) and the variety is a quadric in P4.

For iX = 2 the above remark shows 1 6 dX 6 9, but in fact only 1 6 dX 6 5 are realised. These are given by
Yd (1 6 d 6 5), where Y5 was described above. Y4 ⊂ P5 is a (2, 2) complete intersection, Y3 ⊂ P4 is a cubic
3-fold, and Y2 � P3 is a double cover.

For iX = 1, we have the following result.

Theorem 1.4 (Ishkowskii). If X is a prime Fano 3-fold of index 1, then we have 2 6 gX 6 12 and gX 6= 11. This is
called the Fano range.

Thus there are seventeen families of prime Fano 3-folds.

§ 1.2 A closer look at index 1. There is a beautiful correspondence between Fano 3-folds of index 1, K3
surfaces, and curves which was first shown by Mukai. Indeed in this case the anticanonical bundle −KX = H

is a natural polarisation, and a general element in the linear system |H| is a smooth K3 surface S.

Moreover this surface naturally comes with the polarisation H|S, and a general element in this linear system
is a genus gS curve (the genus of a polarised K3 surface is defined this way). Then it can be shown that gS

coincides with gX.

Mukai showed that general K3 surfaces arise in this way.

Theorem 1.5 (Mukai). If g is in the Fano range, then a general polarised K3 surface of genus g arises as a hyperplane
section of a Fano 3-fold. Moreover, a general canonical curve arises as a hyperplane section of a polarised K3 (and
hence as a complete intersection of a Fano 3-fold).

§ 1.3 Irrationality of the cubic 3-fold. A discussion on low dimensional Fano varieties would not be complete
without mentioning this famous result. If X is a Fano 3-fold, then H3,0(X) = H0(X,𝒪X(KX)) = 0 and hence
we can consider H3(X,Z) ⊂ H3(X,C) = H2,1(X) ⊕ H1,2(X). The space IJacX = H2,1(X,C)̌ /H3(X,Z) is a
polarised Abelian variety called the intermediate Jacobian of X.

The behaviour of this under birational transformations is well-understood. Firstly it is invariant under blowing
up in codimension 2 locii, i.e. we have IJac(BlptsX) = IJacX. On the other hand if C ⊂ X is a curve, then
IJac(BlCX) = IJacX× JacC. Since Jacobians of curves are irreducible as Abelian varieties and P2 has trivial
intermediate Jacobian, we use weak factorisation to deduce that IJacX is a product of Jacobians whenever X
is rational. This is used to deduce the following.

Theorem 1.6 (Clemens–Griffiths). A general cubic 3-fold is irrational.

Sketch. If X is a cubic 3-fold, then IJacX is a five dimensional principally polarised Abelian variety. We
compute that the theta divisor Θ ⊂ IJacX has minimal degree and an isolated singularity x0. This can happen
only if IJacX is indecomposable and not a Jacobian, and hence X is not rational.

Similar arguments also give Torelli theorem for cubic 3-folds, by showing the projectivised tangent cone PTx0
Θ

is isomorphic to X. Thus X is determined by the principally polarised Abelian variety (IJacX,Θ), which is in
turn determined by the polarised Hodge structure on H3(X,C).

§ 2 Semiorthogonal decompositions

Given a variety X/C, recall the construction of the derived category of coherent sheaves D(X) = Db CohX. If
X is Fano, then a classical result of Bondal–Orlov shows that D(X) determines X. We will refine this result and
ask if X is determined by certain canonical subcategories.

Definition 2.1. An object E ∈ D(X) is called exceptional if Hom•(E, E) = C[0]. An exceptional collection is an
ordered sequence (E1, ..., En) of exceptional objects such that Hom•(Ei, Ej) = 0 whenever i > j. We say an
exceptional collection is full if it generates D(X) (i.e. is not contained in a proper triangulated subcategory).
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Fano varieties are naturally equipped with exceptional collection. For example, a classical result of Beilin-
son shows Pn is has a full exceptional collection (𝒪Pn ,𝒪Pn(1), ...,𝒪Pn(n)). This generalises to the following
result.

Lemma 2.2. If X is Fano and L ∈ D(X) is a line bundle, then L is exceptional. Moreover, if L is an ample line
bundle such that 𝒪(−KX) = L⊗r then (𝒪X, L, ..., L

⊗r−1) is an exceptional collection.

Proof. We will show the second part of the statement, the first is analogous. We need to compute the group
Extq(L⊗i, L⊗j) for r > i > j > 0. This is equal to Hq(X,𝒪X(−KX) ⊗ L⊗r+j−i). We know r + j − i > 0 and
hence L⊗r+j−i is ample. Thus the required cohomology vanishes for q > 0 by the Kawamata–Veibig vanishing
theorem. On the other hand if q = 0 and i > j then the group is H0(X, L⊗j−i) which vanishes since anti-ample
bundles don’t have global sections.

Weakening the definition of a full exceptional collection, we have the following.

Definition 2.3. If 𝒟 is a triangulated category, then a semi-orthogonal decomposition denoted 𝒟 = 〈𝒟1,𝒟2, ...,𝒟n〉
is a sequence of full triangulated subcategories that generate 𝒟 and satisfy 𝒟i ⊂ 𝒟j

⊥ whenever i < j.

In particular, two-term semorthogonal decompositions 𝒟 = 〈𝒟1,𝒟2〉 are determined by two additive subcate-
gories 𝒟1,𝒟2 that are closed unders shifts and such that every E ∈ 𝒟 fits in an exact triangle E2 → E → E1 99K
for E1 ∈ 𝒟1, E2 ∈ 𝒟2. Finding semi-orthogonal decompositions of 𝒟1 and 𝒟2 and iterating gives semi-
orthogonal decompositions of 𝒟 with multiple terms.

Thus, for example, every partition of a full exceptional collection gives a semi-orthogonal decomposition. If L
is an exceptional object, then the corresponding component 〈L〉 is equivalent to the derived category of a point
(since every object has form L⊗ V• for a complex of vector spaces V•).

Example 2.4. The category D(P1) is “built out of two points”, in the sense that there is a full exceptional
collection (𝒪P1 ,𝒪P1(−1)). Indeed we have already seen the orthogonality condition, and if E ∈ D(P1) is
indecomposable then it is either of the form 𝒪P1(k)[i] for some k, i ∈ Z or of the form 𝒪x[i] for some
skyscraper sheaf 𝒪x and i ∈ Z. The existence of the required exact triangle can then be deduced from triangles
of the form 𝒪⊕k−1

P1 → 𝒪P1(1)⊕k → 𝒪P1(k) 99K and 𝒪P1 → 𝒪x → 𝒪P1(−1)[1] 99K.

§ 2.1 Admissible subcategories. Semi-orthogonal decompositions can be determined from just one compo-
nent, hence it suffices to look for certain well-behaved subcategories.

Definition 2.5. A full subcategory 𝒟 ′ ⊂ 𝒟 is left (right) admissible if the inclusion functor has a left (resp. right)
adjoint. We say 𝒟 ′ is admissible if it is both left and right admissible.

Proposition 2.6. If 𝒟 = 〈𝒟1,𝒟2〉 is a semi-orthogonal decomposition, then 𝒟1 is left admissible and 𝒟2 is right
admissible. Conversely if 𝒟1 ⊂ 𝒟 is a left admissible subcategory then 〈𝒟1,

⊥𝒟1〉 is a semi-orthogonal decomposition.
Likewise for right admissible subcategories 𝒟2 ⊂ 𝒟.

Proof. If 𝒟 = 〈𝒟1,𝒟2〉 is a semi-orthogonal decomposition then every E ∈ 𝒟 sits in a unique(!) triangle
E2 → E → E1 99K with Ei ∈ 𝒟i. Then the required adjoint functors are given by E 7→ Ei. Conversely if
the inclusion i : 𝒟2 → 𝒟 has a right adjoint i! : 𝒟 → 𝒟2, then for any E ∈ 𝒟 we have the adjunction map
E → i ◦ i!E with cone E1. Remains to show E1 ∈ 𝒟2

⊥, which holds since for any F ∈ 𝒟2 we have

Hom•(iF, E) = Hom•(F, i!E) = Hom•(iF, i ◦ i!E)

i.e. the term Hom•(iF, E1) must vanish in the long exact sequence associated to E → i ◦ i!E → E1 99K.

Remark 2.7. If 𝒟 has a Serre functor S (e.g. if 𝒟 = D(X) for X smooth) then semi-orthogonal decompositions al-
ways come in pairs 𝒟 = 〈𝒟1,𝒟2〉 = 〈S𝒟2,𝒟1〉. In particular a category is left admissible if and only if it is right
admissible. Now if 𝒟 = 〈𝒟1,𝒟2,𝒟3〉 is a semi-orthogonal decomposition such that the subcategory 〈𝒟2,𝒟3〉
has a Serre functor S23, then we obtain a new semi-orthogonal decomposition 𝒟 = 〈𝒟1,S23𝒟3,𝒟2〉. This
general process of mutation can be seen as an action of a braid group on the semi-orthogonal decomposition.

Where to find admissible subcategories? The following theorem gives one source.

Theorem 2.8. If X, Y are smooth varieties and Φ : D(X) → D(Y) is fully faithful, then the image of Φ is admissible.

Exceptional objects can be seen as a special instance of the above. Note that E ∈ 𝒟 is an exceptional object
if and only if the map D(pt) → 𝒟 given by V• 7→ E ⊗ V• is fully faithful. The image is right admissible as
F 7→ Hom(E, F) is the right adjoint by the tensor–hom adjunction.
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Thus exceptional object induces a semi-orthogonal decomposition 𝒟 = 〈E⊥, E〉. Iterating this construction, we
can induce semi-orthogonal decompositions from exceptional collections.

Definition 2.9. If E1, ..., Em is an exceptional collection in D(X) then the Kuznetsov component of D(X) with
respect to this exceptional collection is Ku(X) = E1

⊥ ∩ E2
⊥ ∩ ... ∩ Em

⊥. Thus D(X) = 〈Ku(X), E1, ..., Em〉 is a
semi-orthogonal decomposition.

While the definition of a Kuznetsov component depends on the choice of an exceptional collection, such a
choice is often canonically made. We will see some examples.

§ 2.2 Semi-orthogonal decompositions on families. Take a quadric Q ⊂ P3. If Q is smooth then it is isomor-
phic to P1×P1, so there is a full exceptional collection (𝒪Q(−1, 0),𝒪Q(0,−1),𝒪Q,𝒪Q(1, 1)). Of these, the latter
two are canonical (they come from the structure sheaf and the canonical bundle) so we choose those as our ex-
ceptional objects and hence we have the Kuznetsov component Ku(Q) = 〈𝒪Q(−1, 0),𝒪Q(0,−1)〉 = D(pt)⊕2.

If Q is nodal singular (i.e. given by V(xy− z2) ⊂ P3), then the Kuznetsov component is generated by the ideal
sheaf of the line ℓ = V(x, z) so we have Ku(Q) = D(k[ϵ]/(ϵ2)). The intuition is that as the quadric surface
degenerates from smooth to singular, the Kuznetsov component undergoes a similar transition. To formalise
this, we will study families of varieties.

Definition 2.10. Let π : X → B be a Gorenstein morphism. A relative exceptional object is a perfect complex
E ∈ D(X) such that Hom•

B(E, E) := π∗ Hom
•(E, E) ∼= 𝒪B[0]. A relative exceptional collection is a sequence of

relative exceptional objects E1, ..., Em with HomB(Ei, Ej) = 0 for i > j.

The Gorenstein assumption guarantees the Serre functor takes bounded complexes to bounded complexes, and
the assertion that E is perfect (i.e. quasi-isomorphic to a bounded complex of vector bundles) guarantees that
it is well-behaved under tensor products. It follows that the map π∗(−)⊗E : D(B) → D(X) is fully faithful with
admissible image, so we can induce semi-orthogonal decompositions as before.

Going back to quadrics, let π : Q → B be a family of quadric surfaces with dimB = 1, and Q, B smooth.
It follows that the fibers are at worst nodal. Then (𝒪Q ,𝒪Q(1)) is a relative exceptional collection giving us a
semi-orthogonal decomposition

D(Q) = 〈Ku(Q), π∗ D(B), π∗ D(B)⊗ 𝒪Q(1)〉 .

To understand the Kuznetsov component better, consider the 2:1 cover associated to π obtained as follows. We
have the relative Hilbert scheme Hilblines(Q) → B, with Stein factorisation Hilblines(Q) → B̃ → B. Thus the
map Hilblines(Q) → B̃ is proper with connected fibers, while the map B̃ → B is a 2 : 1 cover branched at the
discriminant locus in B.

We can think of B̃ is the relative moduli space of torsion-free sheaves F in the fibers of π with an equality of
Hilbert polynomials pH(F) = pH(𝒪P1×P1(−1, 0)). As a result there is a universal family in Coh(B̃ × Q), giving
a Fourier–Mukai transform Φ : D(B̃) → D(Q). It can be shown that this is fully faithful with image Ku(Q), so
that the semi-orthogonal decomposition is

D(Q) = 〈D(B̃), π∗ D(B), π∗ D(B)⊗ 𝒪Q(1)〉.

Since relative exceptional collections are well-behaved under pullbacks, this explains the relation between the
Kuznetsov components of smooth and nodal quadrics– if the fiber of Q over b ∈ B is smooth, the moduli space
B̃ has two points corresponding to 𝒪(−1, 0) and 𝒪(0,−1). On the other hand B̃ → B is branched precisely over
the b ∈ B corresponding to nodal quadrics, where the fiber of B̃ looks like Spec k[ϵ]/(ϵ2).

§ 2.3 Decompositions via birational transformations. Orlov’s blow-up formula explains how Kuznetsov
components transform under birational maps– in general blowing up along a codimension r locus Z ↪→ X adds
r− 1 copies of D(Z) twisted by some exceptional bundles to D(BlZX).

More specifically if X is a 3-fold with a smooth point x ∈ X, then the blow-up p : BlxX → X has exceptional
fiber E ∼= P2 and we have D(BlxX) = 〈𝒪E(−2),𝒪E(−1), p∗ D(X)〉. In particular, the Kuznetsov component of X
is “essentially undamaged”, it simply picks up two points. On the other hand if C ⊂ X is a smooth curve then
we have D(BlCX) = 〈D(C), p∗ D(X)〉 i.e. the Kuznetsov component picks up D(C). Note the striking similarity
with intermediate Jacobians!

To see a concrete example, fix two quadrics Q1, Q2 ⊂ P3 and consider the associated pencil. This gives a
family Q over B = P1, which can be realised as a blow-up p : Q → P3 along the elliptic curve C = Q1 ∩Q2

giving us
D(Q) = 〈D(C), p∗𝒪P3 , p∗𝒪P3(1), p∗𝒪P3(2), p∗𝒪P3(3)〉.
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How does this relate to the semi-orthogonal decomposition computed previously? Note the map π : Q → B has
singular fibers at four points in B, so the 2 : 1 branched cover B̃ → B is an elliptic curve. In particular, both
the semi-orthogonal decompositions are made of the derived category of an elliptic curve and four exceptional
objects. These are in fact related and B̃ = C, but the proof is somewhat ad hoc.

Remark 2.11. We just saw that it is possible to have multiple semi-orthogonal decompositions that are not
related in an obvious way (eg. by mutation). This is quite typical! There is however a conjectural proposal by
Halpern–Leistner relating semi-orthogonal decompositions that arise ‘geometrically’.

Example 2.12. Playing the above game in P5, consider the pencil associated to two general quadrics Q1, Q2.
The resulting (2, 2)-complete intersection Q1∩Q2 is the index 2 Fano 3-fold Y4, and the pencil can be realised
as a blow-up Q = BlY4

(P5) → P1. Thus we again have two ways to compute D(Q)– since the blow-up is along
a codimension 2 locus, Orlov’s blow-up formula tells us

D(Q) = 〈D(Y4), p
∗ D(P5)〉.

On the other hand, the pencil π : Q → P1 has singular fibers over six points, so that the associated dou-
ble cover B̃ is a genus 2 curve. A general smooth quadric Q in the pencil has an exceptional collection
𝒪Q,𝒪Q(1),𝒪Q(2),𝒪Q(3) and a Kuznetsov component coming from two spinor bundles, which we can use
to find a relative exceptional collection on Q̃. This, together with the derived category of B̃ give us a semi-
orthogonal decomposition

D(Q̃) = 〈D(B̃), π∗D(P1), ..., π∗ D(P1)⊗ 𝒪Q̃(3)〉.

Note that one semi-orthogonal decomposition has six exceptional objects (coming from D(P5)), while the other
has eight! This was explained by Bondal and Orlov who recovered the two exceptional objects by computing
D(Y4) = 〈D(B̃),𝒪Y4

,𝒪Y4
(1)〉. In fact such a formula holds for all prime Fano 3-folds of index 2.

§ 2.4 Mukai bundles. We discuss a powerful result on how to find exceptional objects.

Theorem 2.13 (Mukai). If X is a prime Fano 3-fold of index 1 and genus g > 6, then for r = 2, 3 and s > r

satisfying rs = g there is a unique vector bundle Er of rank r and c1(Er) = −H that is exceptional. Moreover, it is
stable and satisfies H•(X,Er) = 0. Its dual Eř is globally generated by r+ s sections, giving a map X → Gr(r, r+ s).
This map is an embedding unless g = 6 and X is “special”, i.e. a double cover of Y5.

It is hard to overstate the importance of this theorem. For instance, it leads to the classification of prime Fano
3-folds of index 1. In particular they are complete intersections for g 6 5. For g = 6, they are either special or
(2, 1, 1)-complete intersections in Gr(2, 5). For g = 8 they are linear sections of Gr(2, 6) and for genus 10 they
are obtained as the intersection of a linear section of Gr(2, 6) with the zero section of a vector bundle.

As a second application, we have a canonical choice of exceptional objects Er,𝒪X so the Kuznetsov component
of X is defined with respect to these, and we have D(X) = 〈Ku(X),Er,𝒪X〉.

But there’s a problem. There is no complete and correct proof in the literature, so a proof of this result is a
work in progress [Bayer–Kuznetsov–Macri].

§ 2.5 Perry’s categorical intermediate Jacobian. Kuznetsov components and intermediate Jacobians share
many similar properties– an attempt to explain this is a categorification of Jacobians. An ingredient in this
categorical Jacobian are Blanc’s topological K-theories K

top
0 𝒟, K

top
1 𝒟 defined for a suitably enriched C-linear

category 𝒟. When 𝒟 = D(X) this coincides with the topological K-theory K
top
i 𝒟 = K

top
i X and we have

K
top
0,1𝒟⊗ Q = Heven,odd(X,Q).

The construction is additive on semi-orthogonal decompositions, and has an Euler pairing. There are two
Chern characters– one from the usual Grothendieck group K0𝒟 → K

top
0 𝒟, and another to the Hochschild

cohomology which has a canonical filtration. This can be used to show the following result.

Theorem 2.14 (Perry). Assume 𝒟 ⊂ D(X) is admissible. Then K
top
0,1(𝒟 carries a natural integral polarised Hodge

structure compatible with the above properties. Moreover if n = dimX is odd and Hodd(X,Z) = Hn(X,Z), then
Hn(X,C) ∼= K

top
1 D(X) as integral Hodge structures. If additionally Hp,n−p(X) = 0 except for p = n±1

2
, then Hn(X)

coincides with IJacX.

Corollary 2.15. In the above situation, a semiorthogonal decomposition D(X) = 〈𝒟1, ...,𝒟n〉 gives a decomposition
IJacX = IJac𝒟1 × ...× IJac𝒟n where the Jacobians IJac𝒟i are computed from the weight 1 intermediate Hodge
structure on K

top
1 𝒟i.
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§ 3 Stability conditions and moduli spaces

We will now see how to elucidate Kuznetsov components of Fano 3-folds by studying moduli spaces of
Bridgeland-semistable objects.

Definition 3.1. A stability condition on an Abelian category 𝒜 is an additive map Z : K0𝒜 → Z (called the
central charge) that satisfies Z(E) ∈ H− for any 0 6= E ∈ 𝒜 and has the Harder–Narasimhan property.

We explain what the Harder–Narasimhan property is. Note since Z sends the class of a non-zero object into the
semi-closed upper half plane, the phase of an object is a well defined real number in (0, 1]. We say 0 6= E ∈ 𝒜
is Z-semistable if all non-zero sub-objects of E have smaller phase, or equivalently a smaller slope (where
the slope of E is µ(E) = −ReZE

ImZE
). Then Z satisfies the Harder–Narasimhan property if every 0 6= E ∈ ℰ

admits a filtration 0 = E0 ⊂ E1 ⊂ ... ⊂ En = E such that all factors Ei/Ei−1 are semistable and satisfy
µ(E1/E0) > µ(E2/E1) > ... > µ(En/En−1).

Example 3.2. If 𝒜 = CohC for a smooth projective curve, then Z = i · rank− deg gives a stability condition.

We also define a weak stability condition, in which we allow non-zero objects E to have Z(E) = 0 (in which case
the slope is +∞).

Example 3.3. If S is a smooth projective surface and H = [C] is a polarisation, then Z = i · rank − H · c1 (i.e.
Z(E) = i · rank(E|C) − deg(E|C)) is a weak stability function.

To extend this to triangulated categories, we define first the ‘heart of a bounded t-structure’. The prime example
is an Abelian category 𝒜 as a subcategory of Db 𝒜.

Definition 3.4. If 𝒟 is a triangulated category, then a heart is a full additive subcategory 𝒜 ⊂ 𝒟 such that
𝒜[k1] ⊂ ⊥𝒜[k2] whenever k1 > k2, and every 0 6= E ∈ 𝒟 admits a filtration (i.e. a sequence of maps)

0 = E0 → E1 → ... → En = E

with Cone(Ei−1 → Ei) ∈ 𝒜[ki] for k1 > k2 > ....

To draw the analogy with stability functions on Abelian categories, observe that if E, F ∈ 𝒜 are semistable
objects with slopes µ(E) > µ(F), then Hom(E, F) = 0. Thus 𝒜 is filtrated by ‘slices’ of semistable objects much
like how 𝒟 is filtrated by shifts of 𝒜. A stability condition combines these two ideas.

Definition 3.5. A stability condition on 𝒟 is given by the heart of a bounded t-structure 𝒜 and a stability
function on 𝒜. A weak stability condition is defined analogously.

§ 3.1 Tilting of hearts. How to construct hearts? We have already seen 𝒜 is a heart of Db 𝒜. If Φ is an
autoequivalence of 𝒟, then applying Φ to existing hearts also gives new hearts. But we need a more systematic
way to get new hearts, and this can be done by perturbing existing ones.

Definition 3.6. A torsion pair (T, F) in an Abelian category 𝒜 is a pair of full additive subcategories such that
T ⊂ ⊥F and every E ∈ 𝒜 sits in a short exact sequence 0 → ET → E → EF → 0 with ET ∈ T , EF ∈ F.

The prime example is that of torsion sheaves and torsion-free sheaves on a smooth variety.

Torsion pairs can be thought of as a coarse filtration of 𝒜 into two blocks. Thus for instance if 𝒜 has a stability
function, then for any µ ∈ (0, 1] we have an induced torsion pair T = 𝒜>µ, F = 𝒜⩽µ where the torsion part
contains all objects whose semistable factors have slope > µ.

Proposition 3.7. If 𝒜 is the heart of a bounded t-structure and (T, F) is a torsion pair on 𝒜, then the extension
closure 𝒜♯ = 〈T, F[1]〉 is the heart of a bounded t-structure. Hearts that arise in this way are called tilts of 𝒜.

Concretely, if 𝒜 is the natural heart of Db 𝒜 then 𝒜♯ contains precisely those complexes E which have
H−1(E) ∈ F, H0(E) ∈ T , and Hi(E) = 0 otherwise. Such E can always be represented by a 2-term complex

E−1 d−→ E0 with kerd ∈ F, cokerd ∈ T .

§ 3.2 Constructing hearts in Kuznetsov components. In general, the process of taking semi-orthogonal
decompositions is not compatible with taking hearts of bounded t-structures. However, if we are dealing with a
single exceptional object then hearts descend to Kuznetsov components under reasonable assumptions.

Proposition 3.8. Suppose 𝒟 has an exceptional object E that lies in a heart 𝒜. Moreover, suppose Homq(E, F) = 0

for all F ∈ 𝒜 unless q = 0, 1. Then 𝒜 ∩ E⊥ is the heart of a bounded structure in E⊥.
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Proof. For F ∈ E⊥, we wish to show that each cohomology object with respect to 𝒜 is also in E⊥. Now there is
a spectral sequence E

p,q
2 = Homq(E,Hp

𝒜F) ⇒ Homp+q(E, F) = 0 which shows that Homq(E,Hp
𝒜F) = 0 for all

p, q as required.

Note if 𝒟 has an exceptional object E that lies in a heart 𝒜 such that SE ∈ 𝒜[1] under the Serre functor, then the
hypotheses of the above theorem are satisfied. Indeed, for F ∈ 𝒜 and q > 2 we have Hom(E, F[q]) = Hom(F[q],SE) = 0.

Proposition 3.9. In the above setting, if Z gives a stability condition on 𝒜 with ImZ(E) > 0 then Z|𝒜∩E⊥ is a
stability condition on 𝒜 ∩ E⊥.

Example 3.10. For a del Pezzo surface S with polarisation H, one can consider the corresponding weak
stability condition and note that there is an exceptional collection E1, ..., Em such that for all i, j we have
µH(Ei) > µH(Ej) − H · (−KS). If all Ei are semistable (this holds for the canonical polarisation, for example)
then the Kuznetsov component E1

⊥ ∩ ... ∩ Em
⊥ has a bounded t-structure obtained as follows. Take µ ∈ R

such that µH(Ei) − H(−KS) 6 µ < µH(Ei) for all i, and consider the torsion pair (Coh>µ S,Coh⩽µ S) on CohS.
The tilt Cohµ S contains all Ei, and we have SEi = Ei(KS)[2] ∈ Cohµ[1] by a simple slope computation. Thus
Cohµ S ∩ E1

⊥ ∩ ... ∩ Em
⊥ is the heart of a t-structure.

As a corollary, we see that such collections on del Pezzo surfaces have no phantoms. Indeed if K0(E1
⊥∩...∩Em

⊥)

is torsion, then there are no stability conditions and hence we must have E1
⊥ ∩ ... ∩ Em

⊥ = 0 (otherwise we
could restrict stability conditions from CohS.)

The above ideas can be used to show the following.

Theorem 3.11. For any Fano 3-fold of index 6 2, there is a stability condition on the Kuznetsov component.

It was shown by Pertrusi and Yang that these stability conditions are often invariant under the Serre functor on
the Kuznetsov component. Moreover often there is a unique stability condition with such invariance property.
This leads to Torelli–type theorems.

Example 3.12 (The cubic 3-fold). Recall that D(Y3) = 〈Ku(Y3),𝒪Y3
,𝒪Y3

(1)〉 so let i be the inclusion of the
Kuznetsov component. Consider the pulled back skyscraper i∗𝒪y for y ∈ Y3, which sits in an exact sequence
Iy(1) ↪→ 𝒪Y3

(1) � 𝒪y. But there is a surjection 𝒪⊕4
Y3

� Iy(1) with kernel Ky, and we see that i∗𝒪y = Ky(2).

It is then a theorem that the sheaves Ky belong to a four dimensional moduli space of stable sheaves ℳ(v),
where v is the Chern character. In particular there is an embedding Y3 ↪→ ℳ(v) given by y 7→ Ky. Sheaves
E in the complement ℳ(v) \ Y3 arise from the following construction: pick a cubic surface S3 ⊂ Y3. This has
seventy two maps to P2, and for any π : S3 → P2 we have that π∗𝒪(1) is a divisor of the form H + L1 − L0.
Here L1 − L0 is a root of the associated E6 root system. More importantly, there is a short exact sequence
E ↪→ 𝒪⊕3

Y3
� 𝒪S3

(H + L1 − L0) which shows E is locally free. It follows that Y3 is precisely the locus of non
locally–free sheaves in ℳ(v).

But the moduli space also has an Abel–Jacobi map ℳ(v) → IJacY3 = CH1(Y3) and under this map, we have
Ky 7→ 0 while other objects E get mapped to [L1] − [L0]. In their analysis of the theta divisor Θ ⊂ IJacY3,
Clemens and Griffiths show that it is given by classes of the form [L1] − [L0]. Thus ℳ(v) maps surjectively onto
Θ and Y3 ⊂ ℳ(v) lies in the kernel. Computing normal bundle sheaves, they show that 0 ∈ Θ coincides with
0 ∈ Cone(Y3) formally locally. The map is an isomorphism away from Y3 ∈ ℳ(v), 0 ∈ Θ. Thus Θ is smooth
away from 0 and Y3 is the exceptional locus of the blow–up, giving another way to derive the Torelli theorem
for cubic 3-folds.

What does this have to do with Kuznetsov components? In this case we can show ℳ(v) is also the moduli
space of all stable objects in Ku(Y3). As a corollary, we get a very short proof of the theorem that Ku(Y3)
determines Y3. Indeed there is a unique stability condition invariant under the Serre functor, and this gives a
four dimensional moduli space ℳ(v). The 3-fold Y3 lies in this space as the union of all rational curves.
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