Homological Mirror Symmetry [EXPLICIT]

(Based on many explanations by Danil, Nick, Luca, Franco.)

Parth Shimpi

(For the reading group "HMS for Fanos") 8 October₂₀₂₄

$$HMS for IP¹$

Claim the LE model given by $(Y = \mathbb{C}^*)$ $W = Z + Z^{-1}$ works. (symplectic form dzndz/zz)

This is ^a Lefschetz fibration Critical points ± 1 , Critical values ± 2 \Rightarrow Get Lagrangians $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ coming $\begin{bmatrix} 1 \\ W & (2:1) \end{bmatrix}$ from lifts of vanishing paths Y_1, Y_2

"cylinder w/ stops

What about degrees? The Lagrangians are actually equipped with lifts of phase maps (wrt the volume form dr t id θ on the cylinder) L, has constant phase (1) so wlog lift to the map $1 + R$ $\Phi(L_2)$ has phase (4) 0 6 $6 $\frac{1}{2}$ (-) so lift to $1 \mapsto 2n\pi + \Theta(1)$$ Then deg (p) is Maslov index of the path 1 2, **0** in Lag.Gr.(IK ie deg (x) = deg (y) = n

Have picture of category $\frac{1}{2}$ $\frac{1}{2}$, both arrows degree n.

 μ^d has degree 2-d, so degree considerations $\Rightarrow \mu_d = 0$ for d ± 2 ^{or he}s as nothing of degree n + 2-d = n-1

 μ^2 can be computed explicitly

$$
L_{1,1,2} \otimes (L_{1},L_{1}) \rightarrow (L_{1,1,2})
$$
\n
$$
L_{2,1,2} \otimes (L_{1,1,2}) \rightarrow (L_{1,1,2})
$$
\n
$$
L_{3,1,2} \otimes (L_{1,1,2}) \rightarrow (L_{1,1,2})
$$
\n
$$
L_{1,2} \otimes (L_{1,1,2}) \rightarrow (L_{1,1,2})
$$
\n
$$
L_{2,1} \otimes L_{2,2} = \mathbf{1}
$$
\n
$$
L_{3,1} \otimes L_{2,2} = \mathbf{1}
$$
\n
$$
L_{2,1} \otimes L_{2,2} = \mathbf{1}
$$
\n
$$
L_{3,1} \otimes L_{3,2} = \mathbf{1}
$$

Consequently, $FS(Y,W) \cong End_{\mathbb{P}^1}^{\bullet}(\Theta(1) \oplus \Theta[n]) \cong \mathcal{A}$ (if n=0 then this is the 2-Kronecker algebra with tavial Aco structure) So have homological mirror symmetry D^b Coh IP¹ and $D(Fs(Y,w))$ are both equivalent to $\vec{D}(\vec{A}) = \Delta$ closure of \vec{A} in mod of [gison']

$$
Q_{p} for p \neq 0, \infty \text{ is minor to } \boxed{}
$$
\nwith local system given by $\pi_{1}(L) \rightarrow GL_{1}(C)$
\nand \neg 00(1) is Dehn twist along L (oriesponds to being one)

 y^2

Ч

 $v²$

$$ HMS$ for P^2 and friends

Claim the mirror LG model is $(Y=(\mathbb{C}^*)^2, W=x+y+x'y^{-1})$

How to arrive at this? At least two ways:

 θ If X is a toric variety with dense torus MOC^{*} and moromial lattice $N = M^{\circ}$ then $(M \otimes \mathbb{C}^*)$ and \mathbb{C}^* is a mirror pair.

Each boundary divisor in M gives a ray in fan of X ($\subseteq M$ OIR) and this ray has primitive generator mEM_3 monomial on $N \otimes \tilde{\mathfrak{C}}$ Then X has mirror $(Y = N \otimes C^*$, $W = \sum_{n \in \mathbb{N}} m_D$).

 \odot X=IP² has anticanonical sections $\sigma_0 = xyz$, $\sigma_1 = x^2y + y^2x + z^3$ giving a pencil of cubics $E_t = \{ t \sigma_0 + \sigma_1 = 0 \}$ / $t \in IP^1$ then $\sigma_1/\sigma_0: X\backslash E_{\infty} \longrightarrow \mathbb{C}$ is a Lefschetz fibration. IP^2 $\{xyz=0\}$ $=(a^*)^2$

W has coitical points $\{1, w, w^*\}$ (w= $e^{2\pi i/3}$), critical values $\{3, 3\omega, 3\omega\}$ Generic fiber $W^{-1}(T)$ is a torus with three punctures $(E_T$ is a plane cubic meeting E_{∞} in (0:1:0), (1:0:0), (1,-1,0))

Consider the vanishing path $\frac{1}{a}x + \frac{1}{b}$. What cycle vanishes?

For $T > 1$ real, consider the map $\frac{x}{z}$: $E_T \rightarrow IP^1$ \longleftarrow $\frac{x \rightarrow x}{z}$ This is a branched double cover. branched at solⁿs of $\lambda(\overrightarrow{\lambda}+2\tau\overrightarrow{\lambda}+\tau\overrightarrow{\lambda}-4)=0$ $\lambda_1=0$ $\lambda_2=\lambda_3=\lambda_4$ ip¹

As T approaches 1 , λ_2 approaches λ_3 along blue path ie the preimage of the blue path shrinks to a point.

To find the next vanishing cycle in $W'(T)$, consider the vanishing path as follows:

Need to analyse parallel transport along Te^{ilo}. Idea: For T large, use tropical geometry to find dominant terms. So eg as Teⁱ⁰ varies from $\theta = 2\pi/3$ to 0 y the orange region which looks like $X+Y \times Te^{i\theta}$ undergoes the transformation $(x,y) \mapsto (xe^{-i\theta}, Ye^{-i\theta})$.
This tells how the red cycle twists in $W^{-1}(T)$.

$FS(Y,W)=\langle L_1,L_2,L_3\rangle\cong End(O(-1)\oplus O\oplus O(1))$ $D(FS(Y,W)) \cong D^bGh(P^2)$.

So the exceptional set $\Omega^2(2)$, $\Omega'(1)$, θ looks like

If we wanted to blow up a point on IP then the quiver should become

Note the Lagrangian corresponding to 0,1 has the required intersection numbers!

 Γ Aurox Katzarkou Orlov] Find an LG model $Y_k \rightarrow C^*$ mirror to Bl_k IP² such that vanishing cycles look like

Okay so the LG model for IP^2 is iffy fibers non compact The "actual" mirror is a rational elliptic surface obtained by compactifying

Indeterminacy where 6,6 both vanish, ie Eon Eco Resolve by blowing up.

ie mirror to IP² is a rational elliptic surface w/ an I_9 fiber at ∞ , and 3 distinguished sections.

some technology Fukaya Seidel category stays the same if you remove E₀₀ and the sections.

 T_0 find mirror of Bl_kP^2 , $[AKO]$ deform the above potential so that k of the 9 catical points of E_{∞} are mapped to something finite instead. The fibration then is

