Homological Mirror Symmetry [EXPLICIT]

(Based on many explanations by Danil, Nick, Luca, Franco.)

Parth Shimpi .

(For the reading group "HMS for Fanos") 8 October, 2024

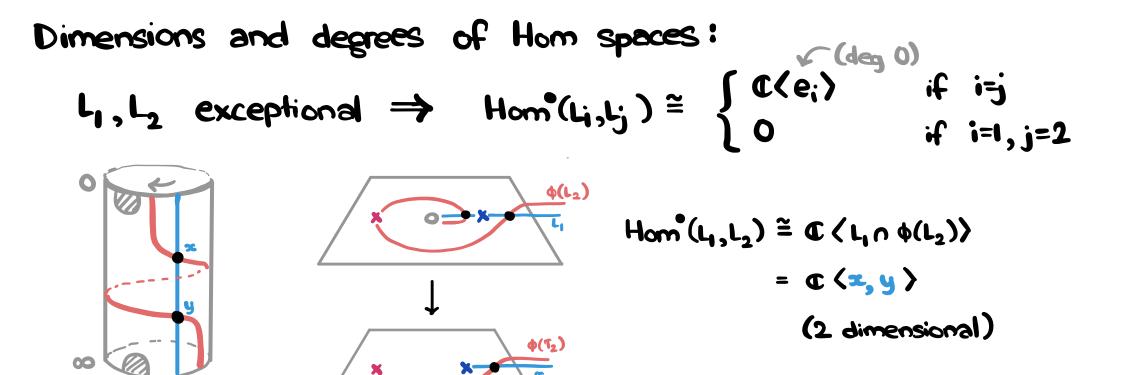
§ HMS for IP1

Claim the LG model given by $(Y=0^*, W=z+z^{-1})$ works. (Symplectic form $dz \wedge d\bar{z}/z\bar{z}$)

×_____

This is a Lefschetz fibration (ritical points ± 1 , Critical values ± 2 \Rightarrow Get Lagrangians L_1, L_2 coming from lifts of vanishing paths T_1, T_2 w(2:1)

And $FS(Y,W) \cong \langle L_1, L_2 \rangle$



"cylinder w/ stops

What about degrees? The Lagrangians are actually equipped with lifts of phase maps (wrt the volume form $dr+id\theta$ on the cylinder) L_1 has constant phase (1) so wlog lift to the map $L_1 \rightarrow IR$ $l \rightarrow 0$ $\Phi(L_2)$ has phase (1) $0 \leqslant \theta < \frac{\pi}{2} (\rightarrow)$ so lift to $l \rightarrow 2n\pi + \theta(l)$ Then deg(1) is Maslov index of the path $12\pi + \theta$ in Lag.Gr. (IR^2) ie deg(2) = deg(y) = n Have picture of category

 μ^{d} has degree 2-d, so degree ansiderations $\Rightarrow \mu_{d} = 0$ for $d \neq 2$ (eg for $\mu_{3}: \underbrace{(l_{2}, l_{2}) \otimes (l_{1}, l_{2}) \otimes (l_{1}, l_{2})}_{\text{each term has degree n}} \rightarrow (l_{1}, l_{2})$ has nothing of degree n+2-d=n-1

 μ^2 can be computed explicitly

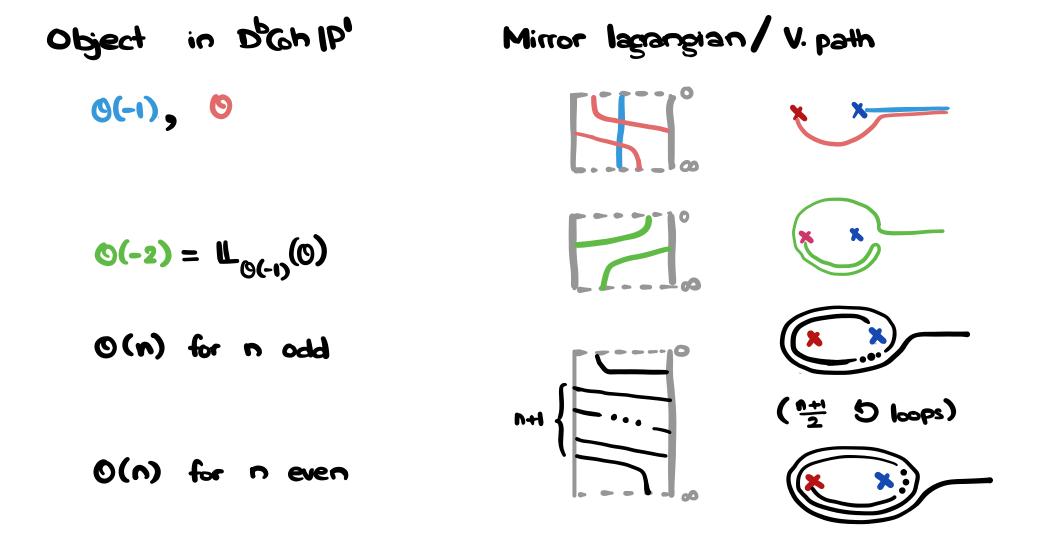
$$(L_{1},L_{2})\otimes(L_{1},L_{1}) \rightarrow (L_{1},L_{2}) \qquad (L_{2},L_{2})\otimes(L_{1},L_{2}) \rightarrow (L_{1},L_{2})$$

$$e_{1}x = xe_{2} = x$$

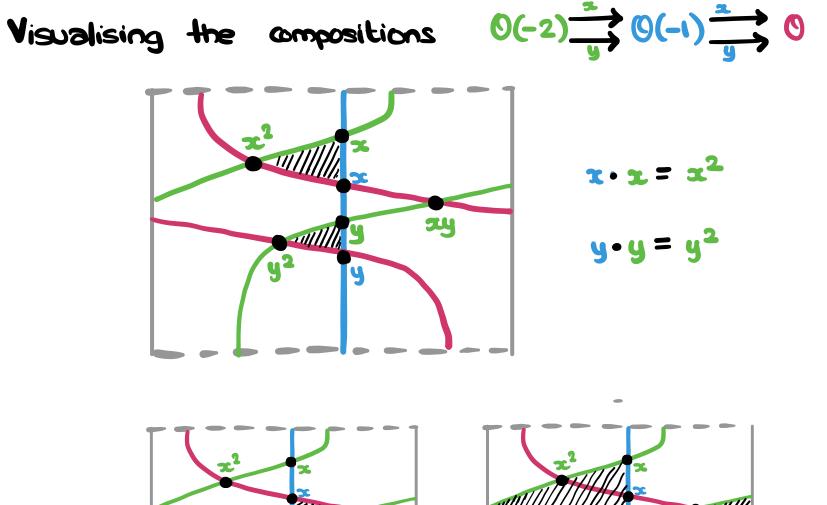
$$e_{2}y = ye_{2} = y$$

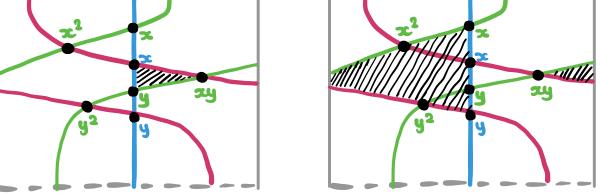
$$o$$

Consequently, $FS(Y,W) \cong End_{P'}^{\bullet}(O(-1) \oplus O[n]) \cong A$ (if n=0 then this is the 2-Kronecker algebra with bivial Aco structure) So have homological mirror symmetry — $D^{b}Gh | P^{1}$ and D(FS(Y,W))are both equivalent to $\overline{D}(A) = \Delta$ closure of A in mod of [gison⁻¹]



Op for
$$p \neq 0,\infty$$
 is minuted to
with local system given by $\pi_1(L) \xrightarrow{P} GL_1(\mathbb{C})$
and $-\otimes O(1)$ is Dehn twist along L (corresponds to taking cone)





 $x \cdot y = xy = y \cdot x$

§ HMS for IP² and friends

Claim the mirror LG model is $(Y = (\mathbb{C}^*)^2, W = x + y + x^2y^{-1})$

How to arrive at this? At least two ways :

If X is a toric variety with dense torus MOC* and monomial lattice N=M^v then (MOC*, NOC*) is a mirror pair.

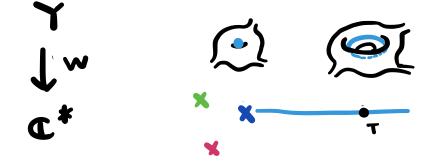
Each boundary divisor in M gives a ray in fan of X ($\subseteq M \otimes IR$) and this ray has primitive generator mEM, monomial on $N \otimes C^*$ Then X has mirror ($Y = N \otimes C^*$, $W = \sum_{D \subset \partial X} m_D$).

(2) $X = IP^2$ has anticanonical sections $\sigma_0 = xyZ$, $\sigma_1 = x^2y + y^2x + Z^3$ giving a pencil of cubics $E_{\pm} = \{ \pm \sigma_0 + \sigma_1 = 0 \} / \pm \epsilon IP^1$ then $\sigma_1/\sigma_0 : X \setminus E_{\infty} \longrightarrow C$ is a Lefschetz fibration. $IP^2 \setminus \{ xyZ = 0 \}$ $= (c^*)^2$ W has critical points $\{1, w, w^2\}$ $(w = e^{2\pi i/3})$, critical values $\{3, 3w, 3w^2\}$ Generic fiber $W^{-1}(T)$ is a torus with three punctures $(E_T \text{ is a plane cubic meeting } E_{\infty} \text{ in } (0:1:0)^4$, $(1:0:0)^4$, $(1,-1,0^{\frac{1}{2}})$

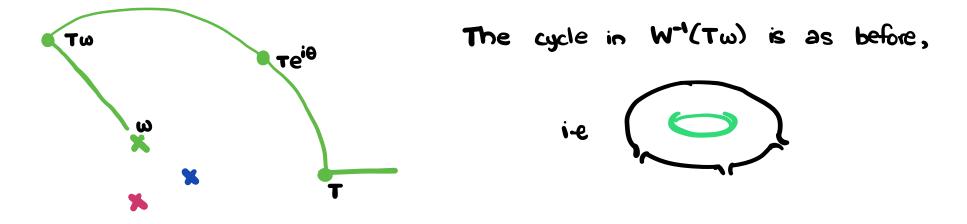
Consider the vanishing path $\prod_{i=1}^{n} \sum_{j=1}^{n}$. What cycle vanishes?

For T>1 real, consider the map $\frac{1}{2}$: $E_T \rightarrow IP^1$ This is a branched double cover, branched at sol²s of $\lambda(\frac{3}{1+2T}+\frac{7}{2}-4)=0$ $\frac{1}{\lambda_1^{-0}}$

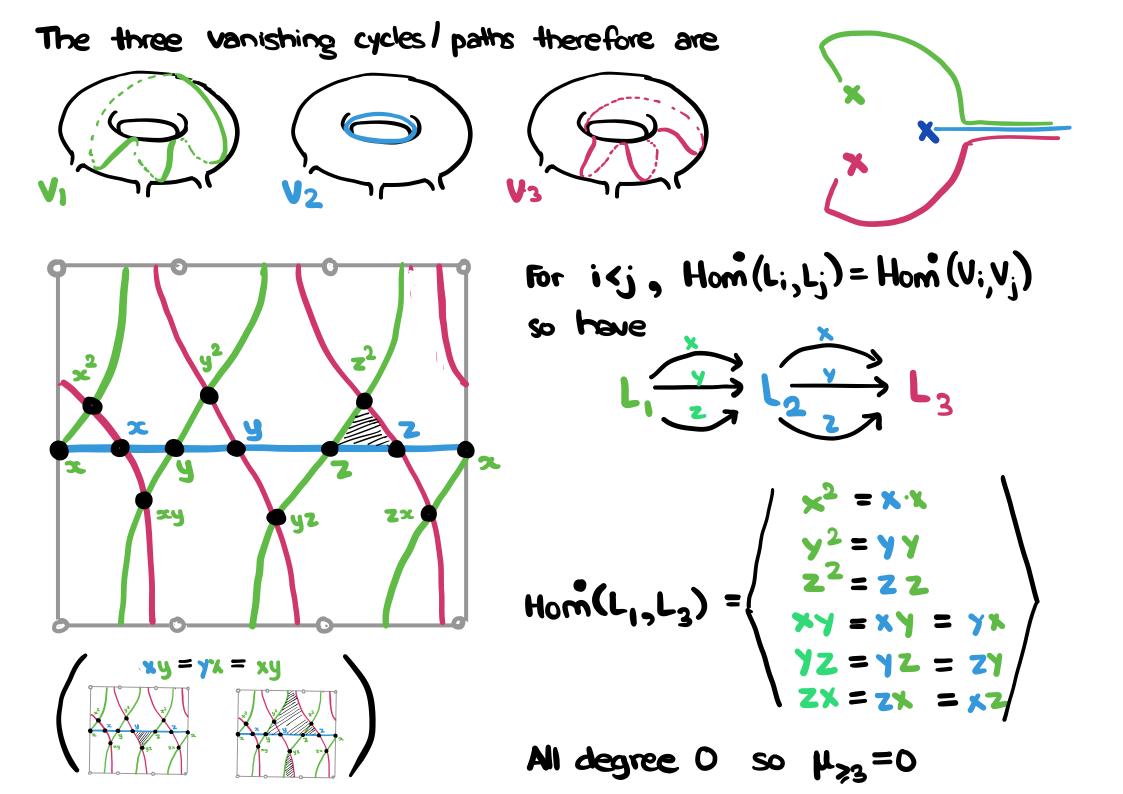
As T approaches 1, λ_2 approaches λ_3 along blue path ie the preimage of the blue path shrinks to a point.

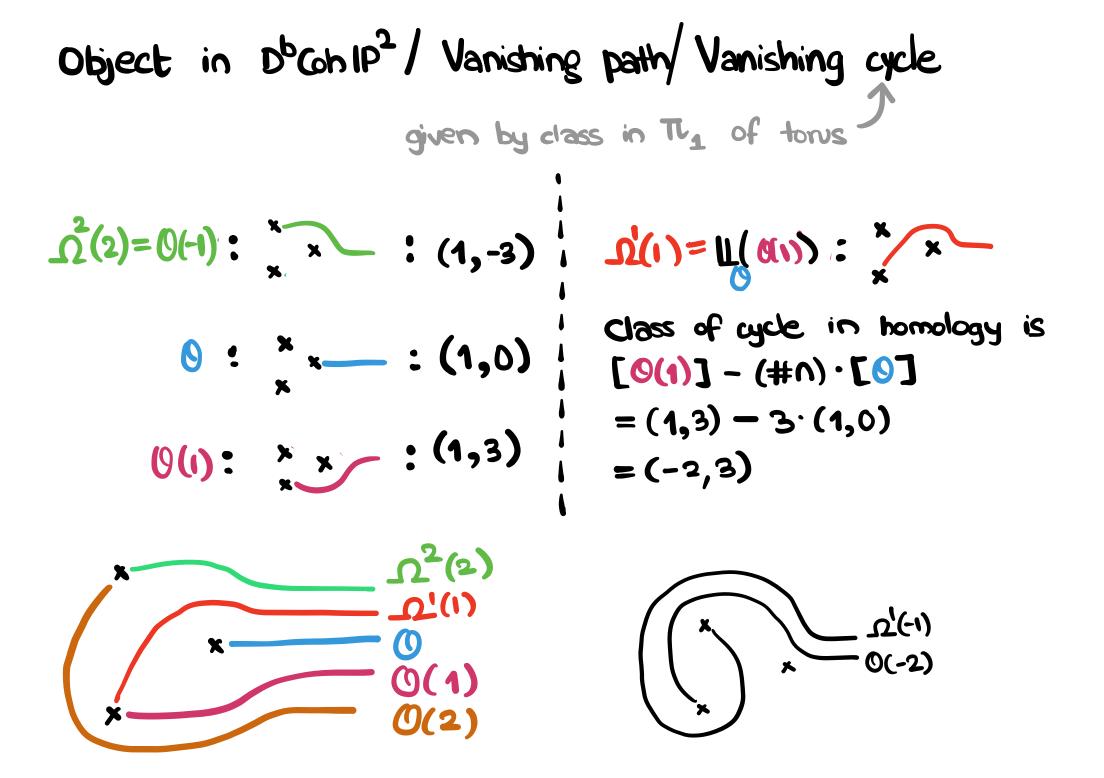


To find the next vanishing cycle in W'(T), consider the vanishing path as follows:

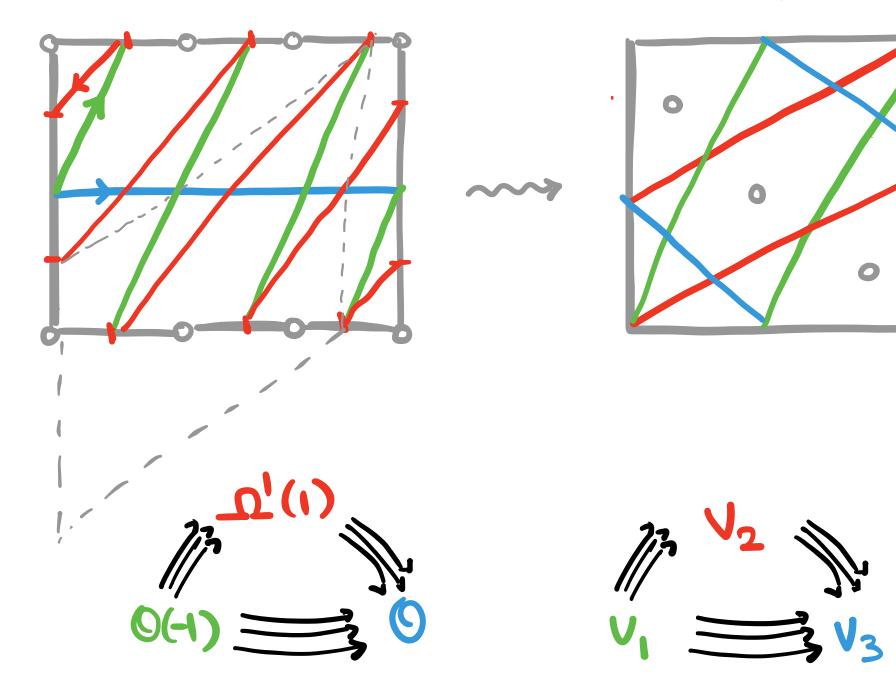


Need to analyse parallel transport along $Te^{i\theta}$. Idea: For T large, use tropical geometry to find dominant terms. So eg as $Te^{i\theta}$ varies from $\theta = 2\pi/3$ to 0 the orange region which looks like $X+Y \approx Te^{i\theta}$ undergoes the transformation $(X,Y) \mapsto (Xe^{-i\theta}, Ye^{-i\theta})$. This tells how the red cycle twists in $W^{-1}(T)$.

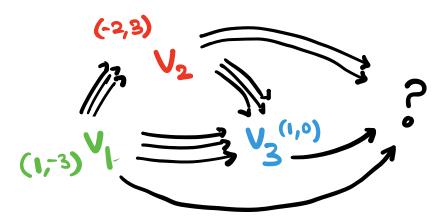




So the exceptional set $n^2(2)$, n'(1), \circ looks like

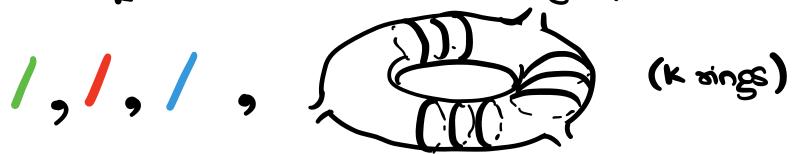


If we wanted to blow up a point on IP^2 then the quiver should become

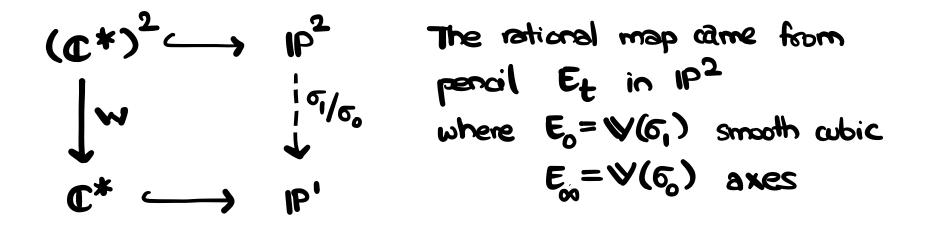


Note the Lagrangian corresponding to (0,1) has the required intersection numbers!

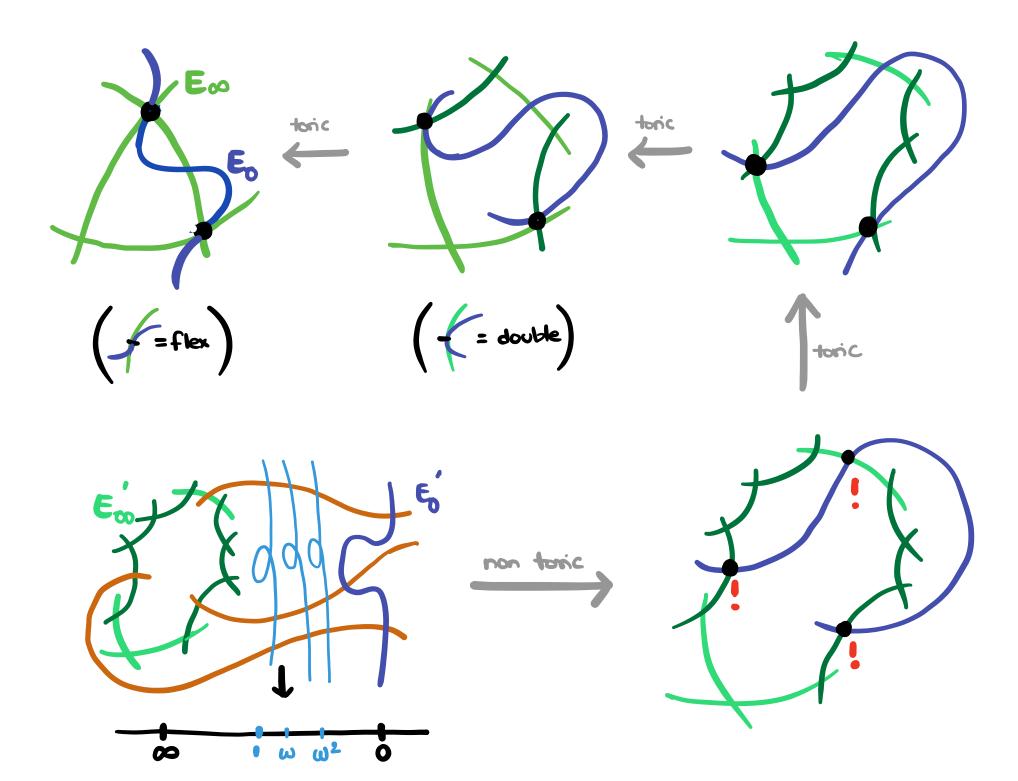
[Aurox-Katzarkov-Orlow] Find an LG model $Y_{k} \rightarrow \mathbb{C}^{*}$ mirror to $Bl_{k} IP^{2}$ such that vanishing cycles look like



Okay so the LG model for IP² is iffy (fibers non-compact) The "actual" mirror is a rational elliptic surface obtained by compactifying.



Indeterminacy where G_0, G_1 both vanish, ie $E_0 \cap E_{\infty}$ Resolve by blowing up.



ie mirror to IP² is a rational elliptic surface w/ an Ig fiber at ∞ , and 3 distinguished sections.

Some technology \Rightarrow Fukaya-Seidel category stays the same if you remove E_{00} and the sections.

To find mirror of $Bl_k IP^2$, [AKO] deform the above potential so that k of the 9 critical points of E_{∞} are mapped to something finite instead. The fibration then is

