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Abstract This paper classifies t-structures on the local derived category of a 3-fold flopping contraction, that are
intermediate with respect to the heart of perverse coherent sheaves. Equivalently, this describes the complete
lattice of torsion classes for the associated modification algebra. The intermediate hearts are (1) categories of
coherent sheaves on birational models and tilts thereof in skyscrapers, (2) algebraic t-structures described in
the homological minimal model programme, or (3) combinations of the above over appropriate open covers.
An analogous classification is also proved for minimal (and partial) resolutions of Kleinian singularities, thus
providing a description of all torsion pairs in the module categories of (contracted) affine preprojective algebras.
The results have immediate applications to the classification of spherical modules and (semi)bricks, and are
first steps towards describing all t-structures and spherical objects in derived categories of surfaces and 3-folds.

It is a truth universally acknowledged, that a mathematician in possession of a triangulated category, must be
in want of tools to understand its autoequivalences. This truth guides the homological algebraist’s pursuit of
t-structures, the representation theorist’s pursuit of torsion pairs, and the geometer’s of spherical objects.

Such is also the predicament we find ourselves in; this paper studies the derived category of a Gorenstein
terminal 3-fold X appearing in a flopping contraction π : X → Z = Spec(R,m) over a complete local base. The
assumptions on the singularities of X are equivalent to requiring that R is an isolated compound Du Val (cDV)
singularity. The bounded derived category of coherent sheaves DbX, as well as the full subcategory supported
on the exceptional fiber

D0X =
{
x ∈ DbX

∣∣∣ Supp x ⊆ π−1[m]
}

has been of interest to birational and symplectic geometers alike [Asp03; Tod08; HW18; HW23; KS24]. The
same can be said of the analogous situation in dimension 2, where Z is a canonical surface singularity and X a
(partial) resolution [Cra00; IU05; Bri09; IUU10; BDL23]. In either setting, an understanding of autoequivalences,
t-structures, and spherical objects is desirable.

When X is smooth, the autoequivalences of the derived category are sometimes controlled by spherical objects.
In general they are not, so Hara–Wemyss [HW24] argue for the study of broader collections of objects which
behave like the simples of an Abelian category, namely (semi)bricks. The rich interplay between semibricks and
t-structures has been a staple tool for representation theorists [MS17; Asa20], and Hara–Wemyss use this to
study the null subcategory C = ker(Rπ∗) ⊆ DbX which is known to be the ‘finite-type’ counterpart to D0X, the
latter exhibiting ‘affine’ behaviour [Bri09; HW23].

Hara–Wemyss show that a global classification of t-structures and bricks in C is indeed possible, and the
classification of spherical objects (when they exist) comes as a corollary. Up to well-understood mutation autoe-
quivalences, the only t-structures are the finitely many hearts H1, ..., Hn ⊂ C given by the homological minimal
model programme [Wem18], and each is described as the module category of some finite dimensional algebra
Λi,con (i = 1, ..., n). Further every brick in C is the track of some simple Λi,con-module.

Hearts on the ‘affine’ category. The category D0X, too, has algebraic hearts. Van den Bergh [Van04] observed
that there is a module-finite R-algebra Λ and a derived equivalence VdB : DbX → DbΛ that identifies flmodΛ

with the full subcategory of perverse sheaves per
(
X
Z

)
⊂ D0X. This serves as our reference heart. The homological

minimal model program extends this to a family of R-algebras {νΛν | ν a sequence of mutations} called modifi-
cation algebras that are derived equivalent to Λ. Tracking the natural hearts flmodνΛν across these equivalences
then produces more algebraic t-structures on D0X (§§ 3.4 and 3.5) which we say are mutations of per

(
X
Z

)
.
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However it is evident that there can be no autoequivalence which identifies the above algebraic t-structures with
the geometric (and non-Artinian) heart cohX. Other geometric hearts can be constructed by iteratively flopping
exceptional curves in X to obtain new flopping contractions π : W → Z, we say the 3-fold W thus obtained
is a birational model of X. Indeed flops give derived equivalences [Bri02; Che02], so tracking cohW across the
composite Bridgeland–Chen functor Ψ : DbW → DbX gives a geometric t-structure on D0X.

To make matters worse, there are hearts which are ‘algebro-geometric’ in quite the literal sense. The construction
of the perverse heart is local, so any crepant morphism τ : X → Y contracting some (but not all) of the
π-exceptional curves gives a sheaf

𝒱

of coherent 𝒪Y -algebras and a derived equivalence DbX → Db 𝒱

. This
identifies a category of suitable

𝒱

-modules with a heart per
(
X
Y

)
⊂ D0X whose objects are precisely complexes

that look like finite length Λ-modules on the τ-exceptional locus and like 𝒪X-modules elsewhere (theorem 5.23).
The category is again not equivalent to any heart examined previously, and it is hence apparent that any
classification must also account for these (semi-)geometric hearts.

Classification of intermediate hearts. The main result of this paper shows that, at least for sufficiently small
cohomological spread, the above possibilities are in fact exhaustive.

This involves building semi-geometric hearts locally using algebraic and geo-
metric categories for ‘smaller’ flopping contractions (§ 5.4), thus obtaining an
inductive description of t-structures. Indeed any partial contraction τ : X→ Y

is an isomorphism away from the open locus X◦ of its non-exceptional fibers,
while in any sufficiently small neighbourhood of a τ-exceptional fiber CI, the
map τ restricts to a flopping contraction XI → ZI with complete local base ZI

in Y. This gives a (flat) cover of X. We show any intermediate t-structure (i.e.
a t-structure whose heart is concentrated in cohomological degrees 0 and −1)
decomposes into purely algebraic or purely geometric hearts with respect to
some such cover.

X◦X1 X456

X◦Z1 Z456

1 2 3 4 5

6

τ

Theorem A (= C, 5.27). Let K be the heart of a t-structure on D0X that is contained in per
(
X
Z

)
[−1, 0]. Then there is a

birational modelW of X, and a partial contraction τ :W → Y, such that K satisfies the following after being pulled back
across the Bridgeland–Chen equivalence Ψ : D0W → D0X.

(1) On the locusW◦ ⊂W where τ is an isomorphism, Ψ−1K restricts to the category of coherent sheaves cohW◦, possibly
tilted in skyscraper sheaves 〈𝒪p | p ∈ Q〉 for some subset of closed points Q ⊂W◦.

(2) For each τ-exceptional fiber CI inW, for sufficiently small neighbourhoodsWI ⊃ CI and ZI 3 τ(CI), the restriction
of Ψ−1K to a WI is an (algebraic) mutation of the category per

(
WI

ZI

)
⊂ D0WI.

Moreover, the above data uniquely determines K.

In particular if τ above contracts all exceptional curves, then K is an algebraic mutation of per
(
W
Z

)
(hence also

of per
(
X
Z

)
) and thus K is the category of finite length modules over a modification algebra. On the other extreme

if τ contracts no curves then K is a geometric t-structure on the birational model W.

Classification of bricks. As a corollary we get a succinct description of bricks in per
(
X
Z

)
, i.e. π-perverse sheaves

whose endomorphism algebra is one-dimensional. This extends to modification algebras a result of Crawley-
Boevey [Cra00, lemma 1], who showed that the dimension vector of any brick-module over an affine preprojective
algebra is a root.

Theorem B (= 6.13). Let b ∈ per
(
X
Z

)
be a brick. Then b is either

(1) a simple module over some modification algebra νΛν, or

(2) a skyscraper sheaf on some birational model W of X,

tracked under appropriate equivalences induced by mutations or flops. In particular, the K-theory class of b is a primitive
restricted root of the (affine) Dynkin data associated to X.
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In sufficiently restricted settings (e.g. under the assumptions imposed in [Tod08]), every algebraic mutation of
per

(
X
Z

)
is equivalent to the category of perverse sheaves on some birational model W. Then the above result

says that, up to applying mutation functors, every brick in per
(
X
Z

)
is either a point sheaf 𝒪p, or the twisted

structure sheaf 𝒪Ci
(−1) on some integral curve, or the suspended canonical sheafωC[1] of the scheme-theoretic

exceptional fiber on some birational model W. In general however there are modifying algebras not related to
birational geometry in any obvious way [these are the ‘hidden’ t-structures alluded to in HW23], and expressing
their simple modules in geometric terms is difficult. For a single flopping curve this is accomplished by Donovan–
Wemyss [DW24, §4] who show that each such simple is, up to mutation, determined by the structure sheaf or
the canonical sheaf of some thickening of the exceptional curve.

Canonical surfaces and preprojective algebras. Suppose X is a Gorenstein canonical surface that admits
a crepant birational morphism π : X → Z = Spec(R, p) with complete local base. The results of this paper,
though developed in the context of 3-folds, apply verbatim to the derived category of X and its π-perverse heart
provided one suitably reinterprets the notions of modification algebras and birational models.

Such a map π is necessarily a crepant (partial) resolution of the Kleinian singularity Z, i.e. X is obtained
by contracting some exceptional curves in the minimal resolution X̃ → Z. It is well-known that X̃ is derived
equivalent to an affine preprojective algebra Π; the contraction X̃→ X determines an idempotent e ∈ Π such that
X is derived equivalent to the contracted preprojective algebra eΠe [KIWY15]. This equivalence Dfl(eΠe)→ D0(X) is
also recovered by Van den Bergh’s construction [Van04], and algebraic mutations of the category of π-perverse
sheaves can be read off from the tilting theory of eΠe [IW, §7.4].

The discussion of birational models is only slightly more subtle, as curves in surfaces do not flop. Birational
transformations (including flops in dimension 3), on the other hand, are naturally induced via geometric in-
variant theory. Indeed X̃ appears as a moduli space M(θ, δ) of stable Π-modules, for some generic stability
parameter θ relative to a K-theory class δ [CS98]. Variation of GIT parameter θ1  θ2 produces a birational
map M(θ1, δ) 99KM(θ2, δ) of Z-schemes. In particular if θ1 and θ2 lie in adjacent chambers then this birational
map is defined away from a single exceptional curve, and simple wall–crossing of the GIT parameter thus gives
an analogue of flops in dimension 2. The role of Bridgeland–Chen equivalences is played by reflection functors
[SY13], and the results are extended to the contracted setting by Iyama–Wemyss [IW].

With this, all arguments in §§ 3 to 6 regarding the partial order of algebraic intermediate hearts and its interac-
tions with convex geometry and line bundles on birational models hold verbatim. Thus the reader indifferent
to dimensions can safely read the remainder of this paper as if it were written for surfaces.

To the reader interested in multiple dimensions, we remark that the correspondence between our results for
3-folds and surfaces is natural. Indeed, the morphism X→ Z can be embedded as a generic hyperplane section
(general elephant) of some 3-fold flopping contraction X→ Spec(R,m), and the corresponding non-commutative
algebras are related by the reduction eΠe = Λ⊗R R. By reducing both to the fiber R/m = R/p, Kimura [Kim24,
theorem 5.4] shows that the corresponding functor flmod(eΠe) ↪→ flmodΛ induces a bijection of torsion classes.
Likewise lemma 5.1 ibid. gives the correspondence between bricks.

Mutating v/s tilting. To motivate why a result such as theorem A is desirable towards a full classification, we
briefly sketch the key argument of [HW24]. Each algebra Λi,con produced by the homological minimal model
programme is silting discrete [Aug20], thus can be assigned a finite and complete hyperplane arrangement,
the silting fan. The chambers σ1, ..., σn of this arrangement are in bijection with the hearts Hi ⊂ C, and each
minimal sequence of wall–crossings σj  σi is assigned an atomic mutation functor Φij. Then, say, given an
object x ∈ Hi[−n, 0] with non-zero cohomologies in degrees 0 and n(> 0), Hara–Wemyss consider the set of
paths σj  σi such that Φij(x) lies in Hj[−n, 0] and show that for the longest such path σj0  σi, the object
Φij0(x) in fact lies in Hj0 [−n+1, 0]. Iterating shows x lies in some Hj after a finite sequence of mutations.

Finiteness of the silting fan underpins the argument, guaranteeing that any poset considered has maximal
elements. The affine curse ensures we don’t have such privileges when studying D0X, and the silting fan of Λ
is infinite and incomplete. So while there still is an assignment of algebraic hearts and mutation functors to
chambers and wall-crossings (§ 4.7), the fan has infinite paths which culminate outside its support.
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We thus replace mutation and the silting fan with tilting in torsion pairs and the heart fan respectively. Given any
Abelian category H, Happel–Reiten–Smalø [HRS96] show that the set tilt(H) of intermediate t-structures (i.e.
t-structures with hearts contained in H[−1, 0]) can be recovered by tilting H in its torsion subcategories, and the
containment order of torsion classes enhances tilt(H) to a complete lattice (i.e. a poset in which every subset has
an infimum and a supremum). Broomhead–Pauksztello–Ploog–Woolf [BPPW24] assign each heart K ∈ tilt(H)
to a cone CK and show that the ensemble HFan(H) of heart cones is a fan. This heart fan is complete and
simplicial for categories such as per

(
X
Z

)
, and the silting fan then sits inside HFan(H) as a sub-fan. Relating atomic

mutations to tilting in functorially finite torsion classes, we thus have a ‘completion’ of silting theory.

Giving a complete description of the lattice of torsion classes is hard, even for finite dimensional algebras
[Tho21; DIRRT23]. The heart fan gives some insight into tilts satisfying numerical criteria (§ 2.4), but there are
examples of tilts of algebraic hearts which have trivial (i.e. 0) heart cone [see BPPW24, example 6.7]. In such
situations the numerical criteria lead to tautologies, and we are left to our own devices.

The main result of this paper, then, is that such situations do not arise when studying tilts of per
(
X
Z

)
. Conse-

quently a complete description of the lattice of torsion classes is possible.

Theorem C (= 5.18). The heart fan of H = per
(
X
Z

)
is given by an intersection arrangement associated to the restriction

of an affine Dynkin root system, i.e. one of the arrangements described in [IW]. The heart cones are described as follows.

(1) (= 6.6) The trivial cone 0 is not the heart cone of any intermediate heart.

(2) (= 4.25, 4.23) A cone outside the imaginary-root hyperplane {δ = 0} is a heart cone if and only if it is full-
dimensional, and in this case it is the heart cone of a unique algebraic heart in tilt(H). The positive and negative
orthants C+,C− are the heart cones of H and H[−1] respectively, and the heart associated to any other full dimen-
sional cone can be expressed as a mutation of per

(
X
Z

)
by choosing wall–crossing paths from C±.

The hearts H and H[−1] are the maximal and minimal elements in tilt(H) respectively, and the partial order on
remaining algebraic hearts respects (atomic) wall–crossing distance from these.

(3) (= 5.5, 5.13) The induced finite hyperplane arrangement on {δ = 0} is naturally identified with the movable fan of
X. Every maximal cone σ in this subfan thus parametrises nef divisors on a unique birational model W of X, and
such σ is then the heart cone of cohW tracked under the composite Bridgeland–Chen functor D0W → D0X.

(4) (= 5.28, 5.27) More generally, every non–trivial cone σ ⊂ {δ = 0} can be assigned a unique partial contraction
W → Y such that per

(
W
Y

)
(tracked under flop equivalences) is the maximal heart in tilt(H) with heart cone σ.

Every other heart with heart cone σ can be obtained by arbitrarily mutating the algebraic components of per
(
X
Y

)
and

tilting in skyscrapers in the geometric components.

An algebraic intermediate heart K then satisfies K > per
(
W
Y

)
if and only if there is an atomic path C+ CK

which can be atomically extended to an infinite sequence of wall–crossings C+ CK CK1  CK2  · · · with
generic limit in σ. In this case per

(
X
Y

)
is the infimum of the decreasing chain K > K1 > K2 > ... in tilt(H).

In §§ 3, 4 and 5 we establish the numerical story, enumerating for each cone in the intersection arrangement
all the intermediate hearts and King–semistable objects associated to it. This involves establishing the fact that
coherent sheaves on any birational model W (which are a priori only intermediate with respect to the perverse
heart on W) are in fact intermediate with respect to the perverse heart on X. For this a careful analysis of the
partial order is necessary, and convex geometric tools are needed not only to supply a systematic enumeration
scheme but also to establish crucial limiting results as in theorem C (4).

Once the heart fan is filled in, the question of whether there are any hearts hidden away in the 0–cone remains.
Here the affine blessing ensures that the non-algebraic locus in the heart fan is codimension 1, so every heart
in tilt(H) has tight algebraic bounds. The following example is illustrative.

Single-curve flops. Let R = ℂJu, v, x, yK/(uv−xy) be the cA1 singularity, i.e. the base of the Atiyah flop X 99KW
where X is the neighbourhood of a (−1,−1) rational curve C. The two flopping contractions X,W → Z = SpecR
are obtained by blowing up the ideals (u, x) and (u, y) respectively.
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Accordingly the modification algebra associated to X is Λ = End(R⊕(u, x)), it can be shown that all modification
algebras are isomorphic and are related by derived equivalences as below.

· · · DflEnd
(

L
⊕

(u,y)

)
DflEnd

(
R
⊕

(u,y)

)
DflEnd

(
R
⊕

(u,x)

)
DflEnd

(
K
⊕

(u,x)

)
· · ·

D0W D0X

Ψ1 Ψ0

Ψ1

Ψ1

Ψ0

Ψ0

Ψ1

Ψ1

Ψ0 Ψ1

VdB VdB

Here the functors Ψi : Dfl(EndN) → Dfl(EndM) are given as RHom(Hom(N,M),−), and the index records
which summand changes between N and M. This changed summand is computed via mutation (theorem 3.7),
thus for instance (u, x) and (u, y) are (first) syzygies of each other while L ⊂ (u, y)⊕2 is the kernel of the natural
map ((u, y) ↪→ R)⊕ ((u, y)→∼ (v, x) ↪→ R).

Any category Dfl(EndM) has a natural heart HM = flmod(EndM), and tracking this across equivalences appear-
ing in the above diagram (and their inverses) produces new t-structures in D0X. Such a t-structure is intermediate
with respect to the perverse heart when the chain of functors Dfl(EndM) D0X is chosen as short as possible,
i.e. the tracks of HM that lie in per

(
X
Z

)
[−1, 0] are of the form

VdB−1 ◦ (... ◦ Ψ0 ◦ Ψ1 ◦ Ψ0 ◦ ...)HM or VdB−1 ◦ (... ◦ Ψ0 ◦ Ψ1 ◦ Ψ0 ◦ ...)−1 HM[−1].

Note the specified chain completely determines the domain of the functor, so we may drop the subscript for
brevity. We also drop VdB from the notation, so for instance Ψ1H is the image of flmod(R ⊕ (u, y)) under the
functor VdB−1 ◦ Ψ1. The algebraic hearts in D0X thus obtained are in natural bijection with full-dimensional
cones in the Ã1 ( ) intersection arrangement, see fig. 1.

Figure 1. The heart fan for a minimal
resolution of the cA1 singularity.

Hyperplanes are induced by the
Ã1 root system, where the simple real
roots α0, α1 are identified with the
K-theory classes of ωC[1] and 𝒪C(−1)

respectively.
H[−1]

H

Ψ0H

Φ0H[−1]

Φ1H[−1]

Φ0Φ1H[−1]

Φ1Φ0Φ1H[−1]

Φ1Φ0H[−1]

Φ0Φ1Φ0H[−1]

Ψ1H

Ψ0Ψ1H

Ψ1Ψ0Ψ1H

Ψ1Ψ0H

Ψ0Ψ1Ψ0H

{α0 = 0}

{α
1
=

0
}

{δ
=
0}

The ray {δ = 0, α0 > 0}, geometrically the ‘limit’ of the path C(H) → C(Ψ0H) → C(Ψ1Ψ0H) → ..., is the
heart cone of cohX = inf {H, Ψ0H, Ψ1Ψ0H, ...}. Likewise it is also the heart cone of the reversed geometric heart
cohX = sup {H[−1], Φ1H[−1], Φ0Φ1H[−1], ...} which can be obtained by tilting cohX in the torsion class generated
by all skyscrapers.

The ray {δ = 0, α0 6 0} is similarly seen to be the heart cone of flop(cohW) and other geometric hearts
that live on W, where flop : D0W → D0X is the Bridgeland–Chen flop functor (in this case isomorphic to
VdB−1 ◦ Ψ1 ◦VdB).

Now the partial order on algebraic hearts (indicated in fig. 1) is such that wall–crossings correspond to simple
tilts (§4.2), thus Ψ0H is obtained by tilting H in the torsion class 〈ωC[1]〉 whileΦ1H[−1] and H[−1] are related by
a tilt in 〈𝒪C(−1)〉. Considering how simples sit in relation to torsion pairs then allows us to ‘push’ non-algebraic
intermediate hearts K ∈ tilt(H) towards the geometric hyperplane.
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Algorithm 1.1 (Simple–tilting). Write H = T ∗ F for the torsion pair corresponding to K(= F ∗ T [−1]).

1. Since K 6= H, one of the simples of H (say S0 = ωC[1]) lies in T and this forces the inequality K < Ψ0H.

2. The inequality Ψ0H > K shows that T intersects Ψ0H nontrivially, hence must contain some simple
{Ψ0S0, Ψ0S1} of Ψ0H. Since Ψ0S0 = ωC lies outside H, we must have Ψ0S1 ∈ T and thus Ψ1Ψ0H > K.
Iterating, we have K < ...Ψ0Ψ1Ψ0H for arbitrarily long chains, and hence K 6 cohX.

3. On the other hand K 6= H[−1] so F contains some simple of H, which in this case must be S1 = 𝒪C(−1).
This shows K > Φ1H[−1], and iterating as above gives K > cohX.

4. Since cohX and cohX both share the heart cone {δ = 0, α0 > 0}, K must do so too i.e. K is numerical. In
fact K can be expressed as a tilt of cohX in 〈𝒪p | p ∈ Q〉 for some Q ⊂ C.

Thus every heart in tilt(per
(
X
Z

)
) is either algebraic, or can be shown to be geometric via the above recipe.

Multi-curve flops. After accounting for perverse hearts for partial contractions, the above description of the
heart fan and the partial order carries over to higher rank cases. Thus for a crepant resolution X → Z of the
cA2 singularity Z = SpecℂJu, v, x, yK/(uv− xy(x+ y)), the heart fan of per

(
X
Z

)
is described by an Ã2 ( ) root

system as in fig. 2.

Ψ2H Ψ202HΨ212H

HΨ21H

Ψ12H Ψ02H

Ψ012H

Ψ1H Ψ0H

Ψ01H

H[−1]
Φ0H[−1]

Φ2H[−1]

Φ102H[−1]

{δ = 0}

{δ+ 1 = 0}

{δ− 1 = 0}

σ

ν2X

ν12X

ν212X

ν21X

X

ν1X

Y

H

Ψ1H

Ψ0H

σ

Figure 2. The 3-dimensional heart fan for a cA2 resolution, sliced along affine hyperplanes (left) and the unit sphere (right).
The mutation functors are abbreviated, e.g. by writing Ψ01 for Ψ1 ◦ Ψ0. Cones in the hyperplane {δ = 0} have been labelled
by the 3-fold whose geometric hearts they are associated to, where e.g. ν212X is the flop of the second curve in ν12X.

Given a non-algebraic heart K ∈ tilt(per
(
X
Z

)
), we can follow algorithm 1.1 to produce bounding sequences

...Ψi2Ψi1H > K > ...Φj2Φj1H[−1]

by iterated simple tilting. However this does not suffice for ‘pushing K to the geometric hyperplane’, and it is
possible that the corresponding paths in the heart fan do not converge to the same cone (illustrated in fig. 2).
In this regard the single-curve case is deceptively simple.
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Establishing CK 6= 0 thus demands more finesse, and our strategy is to utilise line bundles on birational models
for this purpose. Under the identification of Picℝ X with the hyperplane {δ = 0}, (the proper transform of)
any line bundle ℒ ∈ PicW corresponds to a vector θ in the heart fan, so for any cone σ we can consider the
submonoid PicW∩σ (e.g. if σ = C(flop cohW) then this is the monoid of nef bundles). On the other hand, PicW
has a natural action on D0W which induces an action PicW � D0X across the composite flop equivalence. Using
the abbreviated notation ℒ⊗H := flop(ℒ⊗W (flop−1

H)), we establish the following in § 6.

Theorem D (= 6.3, 6.4, 6.5). Writing H = per
(
X
Z

)
for the standard heart in D0X, the following statements hold.

(1) Given any birational model W of X and a line bundle ℒ ∈ PicW, any heart in D0X of the form ℒˇ⊗ H or
ℒ⊗H[−1] lies in tilt(H) if and only if ℒ is nef.

(2) If W ′ is another birational model such that ℒ ∈ PicW and its proper transform ℒ ′ ∈ PicW ′ are both nef, then
there are equalities of t-structures ℒˇ⊗H = ℒ ′̌ ⊗H, ℒ⊗H[−1] = ℒ ′ ⊗H[−1].

(3) For any cone σ ⊂ C(flop cohW) in HFan(H), the induced actions of monoid PicW ∩ σ on the subsets

σ- tilt+(H) =
⋃

ℒ∈PicW∩σ

[ℒˇ⊗H,H], σ- tilt−(H) =
⋃

ℒ∈PicW∩σ

[H[−1],ℒ⊗H[−1] ⊆ tilt(H)

respect the partial order inherited from tilt(H) and the monoid-order on PicW ∩ σ.

(4) Each heart in the posets above is algebraic, and conversely every algebraic heart in tilt(H) lies in some poset of the
above form for suitable W,σ.

(5) The infimum of σ-tilt+(H) is the maximal element of tilt(H) with heart cone σ, likewise the supremum of σ-tilt−(H)
is the minimal element of tilt(H) with heart cone σ.

The above result can be seen as a ‘fixed-point theorem’ for tilt(H). Indeed if ℒ ∈ PicX is an ample line bundle,
then the orbit of H under iterative applications of ℒˇ⊗(−) limits to cohX which is fixed as a heart by PicX.

Figure 3. Continuing from fig. 2, the
actions of PicX and Pic(ν1X) on H are
shown. Here

[
i
j

]
denotes the line bundle

on X which has degrees i and j on the
two exceptional curves respectively, and
we use double brackets (JijK) for bundles
on the flop ν1X.

Note that since
[
0
1

]
and its proper

transform J01K are both trivial on the
flopped curve, their actions coincide i.e.J01Ǩ⊗H =

[
0
1

]̌
⊗H.

The shaded region represents σ-tilt+(H)
for σ shown in fig. 2.
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⊗H

q
1
0

y̌
⊗H

[
0
1

]̌
⊗H

[
1
1

]̌
⊗H

[
2
1

]̌
⊗H

q
2
0

y̌
⊗H

q
1
1

y̌
⊗H

[
0
2

]̌
⊗H

[
1
2

]̌
⊗H

q
3
0

y̌
⊗H

q
2
1

y̌
⊗H

q
1
2

y̌
⊗H

[
0
3

]̌
⊗H

 

 

 

cohX

per
(
X
Y

)
flop(cohν1X)



8 Torsion pairs and 3-fold flops

We then have the following recipe, which works generally to show every heart cone is non-zero.

Algorithm 1.2 (Skyscraper–hunting). Suppose K ⊂ per
(
X
Z

)
[−1, 0] is a non-algebraic t-structure corresponding

to a torsion pair per
(
X
Z

)
= T ∗ F.

1. By lemma 6.11 there is a unique birational model W ∈ Bir
(
X
Z

)
such that flop−1(K) is intermediate with

respect to per
(
W
Z

)
and also contains the full subcategory {w ∈ cohW | Rπ∗w = 0} (we say K lives on W).

Thus replacing K by flop−1(K) if necessary, we may assume K lives on X.

With this hypothesis satisfied, every skyscraper sheaf 𝒪p ∈ per
(
X
Z

)
∩ cohX is either torsion or torsion-free

with respect to the torsion pair T ∗ F (lemma 6.12).

2. Suppose Ci ⊂ X is an exceptional curve and ℒi ∈ PicX is the line bundle with degree 1 on Ci and degree
0 elsewhere. In particular, the maximal and minimal elements of tilt(H) whose heart cone is generated by
ℒi are the categories per

(
X
Xi

)
and per

(
X
Xi

)
respectively, where X→ Xi is the partial contraction of Ci.

Now if some p ∈ Ci satisfies 𝒪p ∈ T , then lemma 6.7 shows ℒ⊗(−n)
i ⊗ H > K for arbitrarily large n, and

thus per
(

X
Xi

)
> K. Likewise if some p ∈ Ci satisfies 𝒪p ∈ F, then we have the bound K > per

(
X
Xi

)
.

3. Thus if there is some curve Ci with two points p, q ∈ Ci such that 𝒪p ∈ T and 𝒪q ∈ F, then K lies in the

interval
[
per

(
X
Xi

)
,per

(
X
Xi

)]
and in particular has non-zero heart cone.

4. Otherwise by connectivity of the exceptional curves in X, either T or F contains all the skyscrapers. By a
similar argument, this forces one of the bounds K > cohX or K 6 cohX. The bound on the other side can
then be found by chasing simple tilts from H or H[−1] as in algorithm 1.1, and this suffices to prove that
CK is non-zero (lemma 6.9).

Heart cones of semi-geometric hearts. Continuing to work with the cA2 crepant resolution above, consider a
flop ρ : X 99K ν1X, and the partial contraction τ : X→ Y of the flopped curve. The heart cone of the associated
semi-geometric heart per

(
X
Y

)
is given by the ray σ = C(cohX) ∩C(flop coh(ν1X)).

To examine other hearts that lie on σ, note that Y has a unique singular point (the image of the flopped curve),
and ρ is simply the Atiyah flop over a neighbourhood Z1 of this point. Computing the category of σ-semistable
objects then recovers the category of perverse sheaves associated to the cA1 flopping contraction τ−1Z1 → Z1,
and thus (up to tilting in skyscrapers in the smooth locus) every other intermediate heart with heart cone σ is
obtained from tilts of this smaller category per

(
τ−1Z1

Z1

)
.

Convex geometrically this manifests as the fact that the cA2 intersection arrangement ‘looks like’ the cA1

arrangement locally around σ (as is apparent from figs. 1 and 2). This phenomenon is more general and a
correspondence between the heart fan of H and that of its semistable subcategories is sketched in remark 2.15.
Broomhead–Pauksztello–Ploog–Woolf’s tangent multifan construction [see BPPW24, ‘Further work’] investigates
this to a greater depth.

Notation and Conventions.We work over the ground field ℂ, and fix once and for all a complete local isolated
compound du Val singularity Z = SpecR with singular point corresponding to the maximal ideal m ⊂ R.

All algebras we consider are finitely generated R-algebras. Given such an algebra Λ, we write DbΛ for the
bounded derived category of right Λ-modules and DflΛ for the full subcategory of complexes whose cohomology
(with respect to modΛ) has finite length. This forms a triangulated subcategory of DbΛ, and we write KΛ for
the K-theory (i.e. Grothendieck group) of DflΛ.

Likewise, all 3-folds we consider are Z-schemes. Given such a scheme π : X→ Z, we write DbX for the bounded
derived category of coherent sheaves on X and D0X for the full subcategory of DbX containing objects supported
on π−1[m]. Again, we write KX for the Grothendieck group of D0X.

When the map π : X→ Z is a flopping contraction, the associated category Per
(
X
Z

)
of perverse sheaves is central

to our exposition. The definition depends on a choice of “perversity” p ∈ ℤ, and we always set p = 0. Thus in Van
den Bergh’s [Van04] or Bridgeland’s [Bri02] notation, the category Per

(
X
Z

)
would be denoted 0Per(X/Z).
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§ 2 Torsion classes in an algebraic category

Let H be an Abelian category. We say H is algebraic if it is Artinian and Noetherian, and has finitely many
simple objects. In particular the Jordan–Hölder theorem holds and each object of H admits a finite filtration
by simple objects, and the associated graded object (a direct sum of simples) is independent of the choice of
filtration. Consequently the Grothendieck group KH is a free Abelian group of finite rank with basis given by
the classes of simples.

Given subcategories U,V ⊂ H we write U ∗ V for the full subcategory of objects h ∈ H which sit in some exact
sequence 0 → u → h → v → 0 with u ∈ U, v ∈ V . The operation (∗) is associative, so writing U ∗ V ∗W for
U,V,W ⊂ H is unambiguous. Then we can define the extension closure of U ⊂ H as

(1) 〈U〉 =
⋃
n⩾0

U ∗ ... ∗U︸ ︷︷ ︸
n factors

,

and say U is closed under extensions (or extension-closed) if 〈U〉 = U. Equivalently, 〈U〉 is the full subcategory of
objects which admit a filtration by objects of U.

For a subcategory U ⊂ H, we define its left orthogonal complement ⊥U as the full subcategory of objects h ∈ H
such that Hom(h, u) = 0 for all u ∈ U. The right orthogonal complement U⊥ is defined analogously. It can be
shown that both U⊥ and ⊥U are always extension-closed.

Definition 2.1. We say a subcategory T ⊂ H is a torsion class if it satisfies T = ⊥(T⊥), and write tors(H) for the
collection of all torsion classes in H. Dually, we say F ⊂ H is a torsion-free class if F = (⊥F)⊥ holds and we write
torf(H) for the collection of all torsion-free classes in H.

For any U ⊂ H it can be shown that ⊥U is a torsion class while U⊥ is a torsion-free class. In fact the assignment
F 7→ ⊥F is a bijection torfH → torsH with the inverse map given by T 7→ T⊥. Further, this correspondence is
such that H = T ∗ T⊥ whenever T is a torsion class. Hence we write ‘H = T ∗ F is a torsion pair ’ to mean T ⊂ H
is a torsion class with corresponding torsion-free class F = T⊥.

Torsion and torsion-free classes are always closed under extensions. Further, torsion classes are closed under
factors (i.e. if T is a torsion class and we have h ∈ T then we also have h ′ ∈ T whenever there is a surjection
h � h ′). Dually, torsion-free classes are closed under sub-objects. The converse implications hold when H
satisfies additional hypotheses– if H is Noetherian then a subcategory T ⊂ H that is closed extensions and
factors is a torsion class, dually if H is Artinian then any subcategory closed under extensions and sub-objects
is a torsion-free class.

§ 2.1 Recollections on t-structures. Let 𝒯 be a triangulated category with shift functor [1]. For subcategories
U,V ⊂ 𝒯, we define the subcategory U ∗ V analogously with exact triangles instead of short exact sequences.
The operation (∗) is associative on subcategories [BBD82, lemma 1.3.10], so the extension closure is defined
just as in (1). Likewise, the orthogonal complements ⊥U and U⊥ are defined as full subcategories of objects
with no morphisms into (resp. from) any object of U.
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Given an interval I ⊂ ℤ and a subcategory U ⊂ 𝒯, we write U[I] for the extension-closure of {u[i] | u ∈ U, i ∈ I}.
We use obvious notational choices whenever convenient, so U[6 0] = U[(−∞, 0]] and U[0, 1] = U[[0, 1]]. Note for
an interval I = [i, j], we have U[i, j] = U[j] ∗U[j− 1] ∗ ... ∗U[i].

Definition 2.2. A full additive subcategory H ⊂ 𝒯 is the heart of a (bounded) t-structure if it is closed under
extensions, H[ℤ] = 𝒯, and H[6 0] = (H[> 0])⊥. We write t-str(𝒯) for the collection of all hearts of bounded
t-structures in 𝒯.

We remark that each of the three subcategories H[6 0], H[> 0], H (called the aisle, coaisle, and the heart respec-
tively) determines the other two and hence saying “the t-structure H[6 0]” is unambiguous.

The heart H of a t-structure is always Abelian, with 0→ h ′ → h→ h ′′ → 0 exact if and only if the corresponding
triangle h ′ → h→ h ′′ → h ′[1] is distinguished in 𝒯. Further, the natural map of Grothendieck groups KU→ K𝒯
is an isomorphism. We say a t-structure is algebraic if its heart is algebraic as an Abelian category.

Further, if H ⊂ 𝒯 is the heart of a t-structure then there are additive functors Hi : 𝒯 → H (i ∈ ℤ), called the
cohomology functors with respect to H, such that any t ∈ 𝒯 is filtered by the objects

{
Hi(t)[−i] | i ∈ ℤ

}
finitely many

of which are non-zero. In particular, for an interval I ⊂ ℤ we see that H[I] contains precisely those objects t for
which H−i(t) = 0 whenever i /∈ I. We say such objects t are concentrated in cohomological degrees in I.

Objects concentrated in cohomological degrees −1 and 0 with respect to H, the so-called two-term complexes,
are of special interest since their properties depend only on H as an Abelian category. We say a t-structure
containing only such objects is intermediate with respect to H, and write tilt(H) ⊂ t-str(𝒯) for the collection of
intermediate t-structures, namely

tilt(H) = {K ∈ t-str(𝒯) | K ⊂ H[−1, 0]} .

The notation is explained by the fact that any K ∈ tilt(H) can be obtained from H by the process of tilting as
described in [HRS96], who show that in this case there is a torsion pair H = T ∗ F on H such that K = F ∗ T [−1].
This torsion pair is obtained as T = K[1] ∩ H, F = K ∩ H, and the correspondence is bijective, and we say that
K is the (negative) tilt of H along the given torsion pair. Given this correspondence, it follows that tilt(H) depends
only on H as an Abelian category and not on the ambient triangulated category.

We write alg-tilt(H) for the set of algebraic t-structures that are intermediate with respect to H, and ftors(H),
ftorf(H) for the corresponding torsion (resp. torsion-free) classes. When H is itself algebraic, the torsion theories
corresponding to algebraic tilts are called functorially finite and can be characterised in multiple ways (see for
example [Asa20].)

§ 2.2 The lattice theory of torsion classes. Again, let 𝒯 be a triangulated category with a t-structure H ⊂ 𝒯.
The set of t-structures t-str(𝒯) can be assigned a partial order given by inclusion of aisles, i.e. we write K ′ 6 K
whenever we have K ′[6 0] ⊆ K[6 0]. The subset tilt(H) is then precisely the interval [H[−1], H] and in par-
ticular inherits this partial order. If we equip tors(H), torf(H) with their natural (inclusion) orders then the
correspondences between these sets can be upgraded to a commutative diagram of poset isomorphisms

(2)

(tors(H),⊆)op (torf(H),⊆)

(tilt(H),6)

( - )⊥

( - )⊥ ∗ ( - )[−1]

⊥( - )

( - ) ∗ ⊥( - )[−1]

( - )[1]∩H ( - )∩H

and these restrict to isomorphisms between the sub-posets ftors(H)op, ftorf(H), and alg-tilt(H).
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When H is algebraic, each poset appearing in (2) is a complete lattice, i.e. it admits arbitrary infima (greatest
lower bounds) and suprema (least upper bounds), since the intersection of torsion classes remains a torsion
class and this gives the infima, while the existence of suprema follows from the poset isomorphism with (torfH)op

and observing that the intersection of torsion-free classes remains torsion-free. Explicitly, given a collection of
torsion classes {Ti | i ∈ I} ⊂ tors(H) we have

inf
i∈I
Ti =

⋂
i∈I
Ti, sup

i∈I
Ti =

〈{
h ∈ H | there is a surjection t� h for some t ∈

⋃
i∈I
Ti

}〉
.

We assume H is algebraic for the rest of this subsection.

Recall that we say a covers b (written a ⋗ b) in a partially ordered set if a > b and there is no element c
satisfying a > c > b. The Hasse quiver of a poset has vertices given by the elements, and an arrow a → b for
each covering relation a⋗b. The join and meet operations on lattices of torsion classes are semidistributive so
their Hasse quivers are naturally labelled by certain indecomposable objects [see BCZ19], we now describe the
construction.

Definition 2.3. An object b ∈ H is a brick if all non-zero endomorphisms of b are invertible. A semibrick
S ⊂ H is a set of bricks that are pairwise orthogonal, i.e. each b ∈ S is a brick, and whenever b1, b2 ∈ S are
non-isomorphic bricks, we have Hom(b1, b2) = 0.

By Schur’s lemma, every simple object in H is a brick and the collection of all simples forms a semibrick. It is
not hard to see that if s ∈ H is simple, then T = 〈s〉 is a minimal non-zero torsion class in H (i.e. the relation
0 ⊂· T is covering in tors(H)), and any torsion-free class covering 0must be of this form. Likewise every maximal
proper torsion class (i.e. a torsion class U such that the relation U ⊂· H is covering) is precisely of the form ⊥s for
some simple object s ∈ H. Intermediate hearts arising from such torsion theories are called simple tilts.

In fact all covering relations arise in this way from simple tilts.

Theorem 2.4 [DIRRT23, theorems 3.3–3.4]. If K ′ ⋖ K is a covering relation in tilt(H), then (K ∩ H) \ K ′ contains
a unique brick b which we call the brick-label of the covering relation. This brick is a simple object of K, and the
corresponding simple tilt in the torsion class 〈b〉 ∈ tors(K) is K ′.

More generally if K ′ < K are intermediate t-structures with respect to H then the set of bricks in (K∩H) \K ′ is non-empty
and equals the set of brick-labels of covering relations in the interval [K ′, K] ⊂ tilt(H).

Thus each arrow in the Hasse quiver of tilt(H) is labelled by a unique brick in H, and each brick in H arises as
the brick-label of at least one such arrow.

The posets tors(H) and torf(H) inherit this labelling across the isomorphisms (2). In particular if the covering
relation T ′ ⊃· T in tors(H) has brick-label b, then b is the unique brick in T ′ \ T and we have T ′ ∩ T⊥ = 〈b〉,
T = ⊥b ∩ T ′, and T ′ = T ∗〈b〉. The analogous statement holds for covering relations of torsion-free classes.

§ 2.3 Widely generated torsion theories. Given an algebraic Abelian category H, we review how the lattice
of torsion classes can be employed to study the set sbrick(H) of semibricks in H.

Note that if K ⊂ H[−1, 0] is an intermediate heart, then every simple object of K lies in a single cohomological
degree with respect to H. Thus writing simp(K) for the set of simple objects of K, we see that simp(K)[1] ∩ H
is a semibrick in H, and this semibrick is contained in the torsion class associated to K. This defines a map
simp(−)[1] ∩H : tilt(H) → sbrick(H), equivalently a map tors(H) → sbrick(H) which maps any torsion class to
a semibrick inside it.

On the other hand each S ∈ sbrick(H) defines a torsion-free class F = S⊥, with corresponding torsion class
T = ⊥(S⊥) characterised by the property of being minimal among all torsion classes containing S. We say
the torsion class T in this case is generated by S. This defines a map sbrick(H) → tors(H), equivalently a map
sbrick(H)→ tilt(H) which we show is a section of simp(−)[1] ∩H.
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Lemma 2.5. Suppose H = T ∗ F is a torsion pair such that the torsion class T is generated by a semibrick S ⊆ H. Writing
K = F ∗ T [−1] for the corresponding tilt, then an object k ∈ K ∩H[−1] is simple in K if and only if it lies in S[−1].

Proof. Given k ∈ S[−1], suppose there is an injection k ′ ↪→ k in K, with k ′ 6= 0. Since T [−1] ⊂ K is a torsion-free
class, k ′ also lies in T [−1]. Thus the object k ′[1] ∈ T is filtered by objects in S and their factors in H [see for
example MS17, lemma 3.1]. In particular, there is some s ∈ S with a non-zero morphism s→ k ′[1].

By injectivity of k ′ ↪→ k, the composite map s[−1]→ k ′ → k is non-zero. Since S is a semibrick, it follows that
s[−1] ∼= k and this is a splitting of the injection k ′ ↪→ k. But k is indecomposable (since k[1] is a brick), so the
map k ′ → k is an isomorphism. Thus k has no non-trivial sub-objects in K, i.e. k is simple as required.

Conversely suppose k ∈ K ∩ H[−1] is simple in K. It follows that k[1] is the quotient (in H) of some s ∈ S. In
other words, there is an h ∈ H and an exact triangle h→ s→ k[1]→ h[1]. Claim h = 0, so that k[1] = s lies in
S as required.

To prove the claim, first note that the triangle s[−1]→ k→ h→ s shows that h cannot be a non-zero object in
K. Thus if h is non-zero, then considering the torsion part of h shows that there is a non-zero composite map
s ′ → h→ s for some s ′ ∈ S. But S is a semibrick, so a similar argument as above shows that the map h→ s is
an isomorphism and k = 0, which is a contradiction.

It follows that assigning a semibrick S ⊆ H to the the minimal torsion class it generates gives an injective map
sbrick(H) → tors(H). The following proposition provides lattice-theoretic and homological characterisations
of the image of this map, and provides alternative ways to read off a semibrick S from the torsion class it
generates.

Proposition 2.6. Given a torsion pair H = T ∗ F with corresponding tilt K = F ∗ T [−1], the following are equivalent.

(1) The torsion class T is generated by a semibrick S ⊆ H.

(2) The interval [0, T ] ⊂ tors(H) is coatomic, i.e. for every U ∈ [0, T) there is a U ′ ∈ [0, T) with U ⊆ U ′ ⊂· T .

(3) In K, every non-zero object has a simple sub-object.

If the above statements hold, then the semibrick S which generates T is unique and is determined as

S = {b ∈ H | b is the brick-label of a relation U ⊂· T in tors(H)}

= {b ∈ H | b[−1] is a simple object of K}.

We have seen (lemma 2.5) that if (1) holds, then the semibrick S which generates T is unique and is given by
simp(K)[1] ∩ H. The equivalence (1) ⇐⇒ (2) is the content of [AP22, theorem 7.2], which also shows that in
this case T is generated by the set {b ∈ H | b is the brick-label of a relation U ⊂· T in tors(H)}. Since this set is
a semibrick (see theorem 4.2 ibid.), it must coincide with S.

It thus remains to show the equivalence (1)⇐⇒ (3), which we now do.

Proof of proposition 2.6 (1)⇒(3). Suppose T is generated by a semibrick S, and k ∈ K is a non-zero object with no
simple sub-object. In particular any sub-object k ′ ↪→ k shares this property (i.e. k ′ has no simple sub-object),
and there is at least one such proper non-zero sub-object k ′.

Now no object of S ⊂ simp(K) can map to k, so k lies in T [−1]⊥. Thus neither k nor k ′ lie in T [−1], so passing
to sub-objects if necessary, we may in fact assume k ′ and k lie in F. But F ⊂ K is a torsion class, so the cokernel
k/k ′ of this morphism also lies in F. It follows that the map k ′ → k is also a proper injection in H.

But repeating the argument, this produces a chain of proper injections ... ↪→ k ′′ ↪→ k ′ ↪→ k in H, which is a
contradiction since H is Artinian. Thus every non-zero k ∈ K necessarily has a simple sub-object.
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Proof of proposition 2.6 (3)⇒(1). Suppose (3) holds. We show that any torsion-free class that is larger than F must
contain some element of the semibrick S = simp(K)[1]∩H. It follows that T is the minimal torsion class containing
S, i.e. T is generated by S as required.

Thus consider any torsion pair H = T ∗ F such that F ⊊ F ′. Thus T ∩ F ′ is a non-zero torsion-free class in the
Abelian category K[1] = F[1] ∗ (T ∩ T ′) ∗ (T ∩ F ′), in particular T ∩ F ′ is closed under taking sub-objects in this
category. But by hypothesis on K (equivalently K[1]), any non-zero object in T ∩F ′ has a simple sub-object which
therefore also lies in T ∩F ′. Thus F ′ has non-trivial intersection with the set simp(K[1])∩H = S, as required.

The obvious dual statements to lemma 2.5 and proposition 2.6 hold. In particular if H = T ∗ F is a torsion pair,
then F is generated by a semibrick S if and only if every non-zero object in the tilt K = F ∗ T [−1] has a simple
factor, and in this case the semibrick generating F is determined as S = simp(K) ∩H.

Remark 2.7. If W ⊆ H is a wide subcategory (i.e. W is closed under extensions, kernels, and cokernels, and is
therefore Abelian), then the set of simples of W is evidently a semibrick of H. Ringel [Rin76, §1.2] shows that
every wide subcategory of H is in fact the extension-closure of its simples, and conversely the extension closure
of any semibrick is a wide subcategory. Thus torsion(-free) classes in H that are generated by a semibrick are
called widely generated [see Asa20; AP22; BCZ19; MS17].

By proposition 2.6 and its dual, any torsion (torsion-free) class in H associated to an Artinian (resp. Noetherian)
tilted heart is widely generated. However, chain conditions on an Abelian category in general strictly stronger
than the requirement that every non-zero object admit a simple sub-object or factor. Indeed in the setting of a
3-fold flopping contraction π : X→ Z, we show that the algebraic heart H = per

(
X
Z

)
has tilts which exhibit each

of the following behaviours (see § 5.3 and remark 5.12 for relevant constructions).

Tilted heart
Chain conditions... Widely generated...

Artinian? Noetherian? torsion class? torsion-free class?
Any algebraic tilt, e.g. H 3 3 3 3

Any geometric tilt, e.g. cohX 7 3 7 3

Any reversed-geometric tilt, e.g. cohX 3 7 3 7

If we further assume that the exceptional fiber π−1[m] has n > 3 integral components C1, C2, ..., Cn (indexed
such that C1 ∩ Cn = ∅), then choosing closed points pi ∈ Ci (i = 1, ..., n) allows us to construct hearts in
H[−1, 0] which exhibit the following additional behaviours.

Tilt of cohX in 〈𝒪p1
, ...,𝒪pn

〉 7 7 3 3

Tilt of cohX in 〈𝒪p1
〉 7 7 7 3

Tilt of cohX in 〈𝒪p | p ∈ C1 ∪ {p2, ..., pn}〉 7 7 3 7

Tilt of cohX in 〈𝒪p | p ∈ C1〉 7 7 7 7

Every other tilt of H fits into one of the seven categories above. In fact any tilt of any algebraic Abelian category
fits into one of the seven categories above; in particular if a torsion pair H = T ∗ F is such that both T and F are
widely generated then it is straightforward to show that the heart K = F ∗ T [−1] is Artinian if and only if it is
Noetherian.

§ 2.4 Heart fans and numerical torsion theories. Given a triangulated category 𝒯 with a t-structure H ⊂ 𝒯,
the poset of intermediate hearts with respect toH can be encoded into convex-geometric data, possibly incurring
the loss of some information. To explain the construction, first fix a surjection K𝒯 � h of the Grothendieck
group onto a free Abelian group h of finite rank. Taking ℝ-linear duals, note that the finite dimensional Euclidean
spaceΘ = Homℤ(h,ℝ) thus injects into Homℤ(K𝒯,ℝ) and hence any vector θ ∈ Θ can be regarded as an ℝ-linear
functional on K𝒯.

We say a subset of Θ is almost rational if it can be defined by inequalities with coefficients in h, and we say
it is rational if it can be defined by finitely many such inequalities. For example, given any α ∈ h the hy-
perplane {θ ∈ Θ | θ(α) = 0} and the closed half-space {θ ∈ Θ | θ(α) > 0} determined by α are rational.
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We use obvious notational shorthands when convenient, for example {α,β > 0} denotes the rational subset
{θ ∈ Θ | θ(α) > 0 and θ(β) > 0}.

A cone in Θ for us is a closed, convex, almost rational subset σ ⊂ Θ such that whenever we have vectors θ, θ ′ ∈ σ
and non-negative reals a, a ′ > 0, we also have aθ + a ′θ ′ ∈ σ. If a cone σ lies in the half-space {α > 0}, we say
the subset σ ∩ {α = 0} is a face of σ. We write faces(σ) for the collection of all faces of σ.

Definition 2.8. We say a collection of cones Σ is a fan in Θ if it is closed under taking faces (i.e. if σ ∈ Σ then
faces(σ) ⊂ Σ) and any two cones in Σ intersect only in faces (i.e. if σ, σ ′ ∈ Σ then σ ∩ σ ′ ∈ faces(σ)). We say
the fan Σ is is complete if every vector θ ∈ Θ is in some cone σ ∈ Σ, and Σ is simplicial if each cone σ ∈ Σ is
simplicial (i.e. generated by linearly independent vectors).

For any subcategory U ⊂ 𝒯, the dual cone of U (with respect to h) is defined to be

C(U) = {θ ∈ Θ | θ[u] > 0 for all u ∈ U}.

The following lemma is immediate from the constructions, and is useful when relating heart cones of interme-
diate hearts to torsion theories.

Lemma 2.9. If K is the tilt of H in a torsion pair H = T ∗ F, then C(K) = C F ∩ (−C T) as subsets of Θ.

We also make the useful observation that dual cones transform via an ‘inverse–transpose’ rule under functorial
equivalences.

Lemma 2.10. Suppose Φ : 𝒯1 → 𝒯2 is an exact equivalence of triangulated categories and the finite-rank free Abelian
quotients K𝒯i � hi (i = 1, 2) are such that Φ induces a linear isomorphism φ : h1 → h2. Then the corresponding
isomorphism (φ̌ )−1 : Hom(h1,ℝ)→ Hom(h2,ℝ) governs the transformation of dual cones, i.e. for any U ⊂ 𝒯1 we have
C(ΦU) = (φ̌ )−1 C(U).

Now if K ⊂ 𝒯 is the heart of a t-structure, the dual cone C(K) is also called the heart cone. Broomhead, Pauksztello,
Ploog, and Woolf [BPPW24] show that the heart cones coming from tilt(H) form a fan in Θ, which generalises
various well-known constructions of fans coming silting theory and the theory of stability conditions.

Theorem 2.11 [BPPW24, theorem A]. For H, 𝒯, h, and Θ as above, the collection of cones given by

HFan(H) =
⋃

K∈tilt(H)

faces (CK)

is a fan in Θ, called the heart fan of H (with respect to h). If H is algebraic, then this fan is complete and simplicial.
If in addition the map K𝒯 � h is an isomorphism, then an intermediate heart K is algebraic if and only if C(K) is a
full-dimensional cone, and in this case K is the unique intermediate heart with heart cone C(K).

For the rest of this subsection, assume H is algebraic and that the map K𝒯� h is an isomorphism. Under these
assumptions, we have plenty of control over the natural map

(3) C : tilt(H)→ HFan(H).

For instance, by the last part of theorem 2.11, the fiber of this map over a full dimensional cone contains a
single element. However, in general, one can have a multiple torsion classes giving the same heart cone. It is
possible to describe the complete fiber of C over any non-zero cone by considering the numerical torsion theories
defined in [BKT14]. To define these, given θ ∈ Θ we consider the subcategories

Htr(θ) = {h ∈ H | θ[f] 6 0 for all factors h� f},

Htr(θ) = {h ∈ H | θ[f] < 0 for all non-zero factors h� f 6= 0},
Htf(θ) = {h ∈ H | θ[s] > 0 for all sub-objects s ↪→ h},

Htf(θ) = {h ∈ H | θ[s] > 0 for all non-zero sub-objects 0 6= s ↪→ h}.
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These define two torsion pairs H = Htr(θ) ∗ Htf(θ) = Htr(θ) ∗ Htf(θ), and we call the corresponding tilts
Htt(θ), H

tt(θ) respectively. Evidently Htt(θ) 6 Htt(θ), and we have an interval [Httθ,H
ttθ] ⊂ tilt(H). This in-

terval contains precisely the intermediate hearts K which satisfy θ ∈ C(K).

Lemma 2.12. Let K ∈ tilt(H) be an intermediate heart, and fix a vector θ ∈ Θ. Then we have θ ∈ C(K) if and only
Htt(θ) 6 K 6 Htt(θ) in tilt(H).

Proof. Write H = T ∗ F for the torsion pair associated to K, and note that if θ ∈ C(K) then the definitions imply
T ⊆ Htr(θ) and F ⊆ Htf(θ), which under the bijections (2) gives us Htt(θ) 6 K 6 Htt(θ). Conversely if K lies in
the said interval, then we have T ⊆ Htr(θ) and F ⊆ Htf(θ), and hence C(Htrθ) ⊆ C(T) and C(Htfθ) ⊆ C(F). This
gives us the desired conclusion

θ ∈ C(Htfθ) ∩
(
−C(Htrθ)

)
⊆ C F ∩ (−C T) = CK.

Given the above lemma we can now describe the interval [Httθ,H
trθ] in tilt(H) using semistable objects following

[AP22]. Recall that given an Abelian category K and a parameter θ ∈ Hom(KK,ℝ), King [Kin94] defines the
full subcategory of θ-semistable objects in K as

Kss(θ) = {k ∈ K | θ[k] = 0, θ[s] > 0 for all sub-objects s ↪→ k}.

This is a wide (in particular, Abelian) subcategory of K. We say a θ-semistable object k ∈ K is stable if it is
simple in Kss(θ), equivalently if the inequality θ[s] > 0 is strict for every sub-object s ↪→ k in K. If K is algebraic,
then every θ-semistable object admits a filtration by θ-stable ones and thus Kss(θ) is the extension closure of the
set of θ-stable objects.

In the context of our algebraic Abelian category H with θ ∈ Θ, we clearly have Hss(θ) = Htr(θ) ∩ Htf(θ), and
hence there is a decomposition

H = ︸ ︷︷ ︸
Htr(θ)

Htr(θ) ∗
Htf(θ)︷ ︸︸ ︷

Hss(θ) ∗Htf(θ) .

In particular if Hss(θ) = U∗V is a torsion pair, then there is an induced torsion pair H = (Htrθ∗U)∗(V∗Htfθ) and
the corresponding tilt K = V ∗Htfθ∗Htrθ[−1]∗U[−1] evidently lies in the interval [Httθ,H

ttθ]. Further considering
θ as a stability parameter on K (using the isomorphism KK ∼= KH), lemma 2.12 shows θ is non-negative on
every class of K so one computes

Kss(θ) = {k ∈ K | θ[k] = 0} = V ∗U[−1]

and this clearly lies in tilt(Hssθ). The following theorem shows that considering semistable objects thus gives a
poset isomorphism [Httθ,H

ttθ]→ tilt(Hssθ).

Lemma 2.13. The maps below are well defined and give mutually inverse poset isomorphisms

tilt (Hssθ)
( - )ssθ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

⟨ ( - ),Htfθ,Htrθ[−1] ⟩

[
Httθ,H

ttθ
]
⊆ tilt(H)

Further the covering relations in tilt(Hssθ) are precisely those that remain covering in tilt(H) under the above correspondence,
and the brick-labels coming from the two posets coincide.

Proof. This is essentially [AP22, theorem 1.4], which is stated in terms of torsion classes and gives the poset
isomorphisms

tors (Hssθ)
( - )∩Hss(θ)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Htr(θ)∗( - )

[
Httθ,H

ttθ
]
⊆ tors(H).
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A consequence of lemmas 2.12 and 2.13 is that in addition to being a tilt of H, every intermediate heart K
with θ ∈ C(K) is also a tilt of Htt(θ). Indeed, we have K = (V ∗ Htfθ) ∗ (Htrθ ∗ U)[−1] for some torsion pair
Hss(θ) = U ∗ V, and we can verify that U is a torsion class in Htt(θ).

Further, lemma 2.13 gives us the following characterisations of Htt(θ).

Corollary 2.14. Given an intermediate heart K ∈ tilt(H) and a vector θ ∈ CK, the following statements are equivalent.

(1) The heart K is maximal among tilts of H with θ in their heart cone, i.e. K = Htt(θ).

(2) The categories of θ-semistable objects in H and K coincide, i.e. Hss(θ) = Kss(θ).

(3) The category Hss(θ) lies in K.

(4) The category Kss(θ) lies in H.

We say a vector θ is generic in a cone σ if it lies in σ but not in any proper face of σ, equivalently if it is contained
in the interior of σ in the Euclidean space span(σ) ⊂ Θ. If θ, θ ′ are both generic in some cone σ ∈ HFan(H),
it is easy to see that all their associated numerical categories coincide i.e. Htr(θ) = Htr(θ

′), Htf(θ) = Htf(θ
′),

and so forth. Thus we use the notations Htr(σ), Htr(σ), Htf(σ), Htf(σ), Htt(σ), Htt(σ), and Hss(σ) to denote the
respective categories associated to any generic vector θ ∈ σ.

Remark 2.15 (Zooming into the heart fan). Given a stability parameter θ ∈ Θ, the correspondence 2.13 can be
used to essentially ‘read off’ the heart fan of Hss(θ) from that of H. To see this, note that the exact inclusion
Hss(θ) ↪→ H induces a map of Grothendieck groups which can be factored through its image hss as

KHss � hss ↪→ h→∼ KH,

where hss is again a free Abelian group of finite rank. The heart fan of Hss(θ) with respect to hss thus lives in the
vector space Θss = Homℤ(hss,ℝ) which is naturally a quotient of Θ. It can be shown that the surjection Θ� Θss

is such that the image of (the sub-fan generated by)

{σ ∈ HFan(H) | θ lies in some face of σ}

is a sub-fan of HFan(Hssθ). More precisely, given a heart K ∈ [Httθ,H
ttθ] and the corresponding category

Kss(θ) ∈ tilt(Hssθ), it can be shown that the image of C(K) is always a face of C(Kssθ) and is in fact equal to
C(Kssθ) if K is algebraic.

To see an example where the image of C(K) is a proper face of C(Kss), one should examine the category
H = Rep(2 ⇒ 1) associated to the 2-Kronecker quiver [BPPW24, example 4.6], and the stability parameter
θ = (−1, 1) given in the basis dual to vertex simples.

§ 3 Algebraic hearts on flopping contractions

As in the introduction, let Z = SpecR be a complete local isolated compound du Val (cDV) singularity, equiva-
lently the spectrum of a complete local Gorenstein ℂ-algebra R such that the unique singularity at the maximal
ideal m is at worst terminal. In particular, R is a normal domain.

A flopping contraction over Z [KM98, definition 6.10] is a projective birational morphism π : X → Z such that
X is normal and the exceptional locus is codimension 2. In particular, canonical divisor on X is numerically
π-trivial (equivalently π∗ωZ = ωX, i.e. π is crepant). By Kawamata’s vanishing theorem, the map π is acyclic i.e.
Rπ∗𝒪X = 𝒪Z and thus the exceptional fiber C = π−1[m] is such that the reduced subscheme C = Cred is a finite
collection of rational curves [see e.g. Van04, lemma 3.4.1].

The integral components of C can be naturally indexed over some Dynkin data by considering a generic hyper-
plane section (general elephant) Z = SpecR ↪→ SpecR and the pullback X = X×Z Z. Indeed by assumptions on
R, the variety Z is the germ of a canonical surface singularity and the map X→ Z is a crepant partial resolution
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which is independent of the choice of general elephant [Rei, theorem 1.14]. In particular X is obtained by con-
tracting a subset of exceptional curves in the minimal resolution of Z. By the McKay correspondence [McK80],
the exceptional curves in the minimal resolution are indexed over some ADE Dynkin graph ∆. Recording the
indices of the contracted curves in a subset J ⊂ ∆ shows that the integral components of C are naturally indexed
over the Dynkin subgraph ∆ \ J and we can write the reduced exceptional fiber as C =

⋃
i∈∆\J Ci where each

component Ci is a ℙ1.

It is convenient to view ∆ as sitting inside the associated extended (affine) Dynkin diagram ∆ with extended
vertex 0 ∈ ∆\∆. This data J ⊂ ∆ ⊂ ∆ controls much of the homological algebra of R as we now describe.

For each exceptional curve Ci (i ∈ ∆\J), Van den Bergh [Van04, §3.5] gives the construction of a distinguished
vector bundle 𝒩i on X. This is such that if we write 𝒩0 = 𝒪X, the resulting bundle 𝒱

(
X
Z

)
=

⊕
i∈∆\J 𝒩i is tilting.

Consequently X is derived equivalent to the basic R algebra Λ = EndX 𝒱
(
X
Z

)
via the functor

(4) VdB : DbΛ
(−)⊗L

Λ𝒱
(
X
Z

)
−−−−−−−−−−−→ DbX.

This equivalence maps the natural heart modΛ ⊂ DbΛ to the category of perverse sheaves Per
(
X
Z

)
= VdB(modΛ),

which should be thought of as the ‘standard’ heart in DbX owing to its amiable cohomological properties. By
[Van04, corollary 3.2.8],

(5) Per
(
X
Z

)
=

{
x ∈ CohX [0, 1]

∣∣∣∣∣ R1π∗(H0x) = 0, π∗(H−1x) = 0,

Hom(c,H−1x) = 0 whenever c ∈ CohX satisfies Rπ∗c = 0

}
.

Indecomposable projective Λ-modules are naturally in bijection with the summands 𝒩i ⊂ 𝒱
(
X
Z

)
(and hence with

the vertices of ∆ \ J), where the summand 𝒩i determines the indecomposable projective Λ-module

Pi = HomX

(
𝒱
(
X
Z

)
,𝒩i

)
.

By [Van04, proposition 3.5.7], the simple Λ-module Si dual to Pi can be tracked across (4) as

VdB( Si ) =

ωC[1], i = 0

𝒪Ci
(−1), i ∈ ∆ \ J

.

Now under the equivalence (4), the subcategory D0X ⊂ DbX of complexes with cohomology supported within
C is identified with DflΛ ⊂ DbΛ, the thick subcategory generated by the simples {Si | i ∈ ∆ \ J} (equivalently,
the subcategory of complexes whose cohomology modules have finite length over Λ).

We write per
(
X
Z

)
= Per

(
X
Z

)
∩D0X for the subcategory which then corresponds to the natural heart flmodΛ ⊂ DflΛ

of finite lengthΛ-modules. Evidently, this is an algebraic Abelian category with simple objects {Si | i ∈ ∆\J}.

Thus we seek to examine t-structures on D0X intermediate with respect to per
(
X
Z

)
, equivalently the torsion theo-

ries on flmodΛ. In this section we give a complete description of the algebraic tilts and their partial order.

§ 3.1 Sets with mutation. A recurring motif in our treatment of algebraic hearts is that of mutation combina-
torics, which allow us to enumerate sets over Dynkin data. We briefly explain the construction in an abstract
setting, and recognise its various manifestations as they come up in the rest of the section.

Let G be a Dynkin graph with associated Weyl group W(G), which is generated by simple reflections {si | i ∈ G}.
When W(G) is finite there is a unique longest element wG in the weak (Bruhat) order, and further [e.g. by IW,
lemma 1.2] there is an involution invG : G → G such that wGsiwG = sinvG(i). If W(G) is not finite, we simply
declare invG to be the identity.

Then for any subgraph J ⊂ G, this defines a map ιJ : G \ J → G given by ιJ(i) = invJ+i(i) where invJ+i is the
involution for the full subgraph J ∪ {i}.

We then say the simple mutation of the Dynkin data J ⊂ G at i ∈ G \ J is given by

νiJ = J ∪ {i} \ {ιJ(i)} ⊂ G.
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When iterating simple mutations, we omit brackets thus writing νin ...νi1J to mean νin(νin−1
...νi1J), noting

that the sequence makes sense only if i1 ∈ G \ J and ij+1 ∈ G \ (νij ...νi1J) for each j = 1, ..., n− 1. In this case
we say the sequence of symbols ν = νin ...νi1 is a J-path of length n.

Paths are composed in the obvious way, namely if ν is a J-path of length n and µ is a νJ-path of length m then
the concatenation µν is a J-path of length m+ n. We treat the empty word (∅) as a J-path of length 0.

Clearly, simple mutation is involutive in the sense that νιJ(i)νiJ = J. Given a J-path ν = νin ...νi1 , we can thus
define a reversed J-path to be the νJ-path given by ν = νι(i1)...νι(in), where the maps ι in order correspond to
the subsets J, νi1J, ... , νin−1

...νi1J.

When the choice of J is clear, we simply write ι instead of ιJ.

Definition 3.1. A set with G-mutation is a set A equipped with a map 𝕁 : A → 2G that assigns each element of
A to some subgraph of G, and a collection of functions (νi : {a ∈ A | i /∈ 𝕁(a)}→ A)i∈G (called simple mutations)
such that for each a ∈ A, we have 𝕁(νia) = νi𝕁(a) and νι(i)(νia) = a.

If A,A ′ are two sets with G-mutation, we say a map f : A→ A ′ respects mutation if for all a ∈ A and i ∈ G \ 𝕁(a),
we have 𝕁(fa) = 𝕁(a) and νi(fa) = f(νia).

Example 3.2. Given a Dynkin graph G, the set of all its subgraphs 2G is naturally a set with G-mutation. This
naturally breaks up into smaller sets with G-mutation called mutation classes, where the mutation class of J ⊆ G
is the subset of 2G containing subgraphs that can be obtained from J by iterated mutation. Thus {∅} and {G} are
mutation classes of the trivial subgraphs ∅ and G respectively. Iyama–Wemyss [IW, §4.2] compute all mutation
classes containing ‘large’ subgraphs of affine Dynkin diagrams, i.e. subgraphs whose complements contain 3
vertices. We draw the mutation class E7,4 below.

1

7

4

3

0

3

0

2
3

6 7

53

2
4
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0
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2
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7 7

77

Figure 4. The mutation class of J = {2, 3, 5, 6, 7} inside the Ẽ7 Dynkin graph 1 2 3 4 5 6

7

0 , where subgraphs are indicated by
marking off their vertices with a cross ( ). Arrows indicate simple mutation, the symbol ν has been omitted for brevity.

Example 3.3. If A is a set with an action of the Weyl group W(G), then there is a natural G-mutation structure
given by 𝕁(a) = ∅, νi(a) = a · si for all a ∈ A, i ∈ G. Thus for instance the set of chambers Cham(G) in the Tits
cone of W(G) is a set with G-mutation, where the (right)-action is by simple wall crossings.

More generally, a subset J ⊂ G determines a hyperplane arrangement in Euclidean space [see for example IW,
chapter 1], and any set with an action of the associated Deligne groupoid (also called the J-cone groupoid, see
§ 2.3.1 ibid.) is a set with G-mutation. This includes the prototypical example Cham(G, J), which is the set of
chambers in the Tits cone of the hyperplane arrangement.

When G = ∆,∆ and J = J, we explain the construction of the hyperplane arrangement and the set Cham(G, J)

in §§ 4.4 and 4.5. Other structures associated to the data J ⊂ ∆ ⊂ ∆, for instance the set of modifying R-modules
(§ 3.3), the set of torsion(-free) classes in flmodΛ (§ 3.4), and the set of birational models of X (§ 5.1) are all
shown to have a natural mutation structure which is related to that on the set of chambers.
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Paths and exchange quivers. If A is a set with G-mutation, the exchange quiver ExQuiv(A) is a quiver with
vertices A and a labelled arrow i : a→ νia for each a ∈ A and i ∈ G\𝕁(a). Paths in the exchange quiver can be
described by a sequence of valid mutations from a specified starting vertex– it is easy to see that each 𝕁(a)-path
ν = νin ...νi1 describes a unique path in the exchange quiver

(6) a
i1−−→ νi1a

i2−−→ ...
in−−→ νinνin−1

...νi1a

which we call the positive path ν from a, and further every path in the exchange quiver corresponds to a unique
pair (a, ν) in this way. It is convenient to write νa for the end-point of this path. The reversed path ν is then a
positive path from νa and we have ν(νa) = a.

If the positive path (6) has minimal length among all paths in ExQuiv(A) from a to νa, we say it is minimal.
Clearly all minimal positive paths from a to νa have the same length, and a positive path ν from a is minimal if
and only if the reversed path ν from νa is so. Further, if two vertices a, b lie in the same connected component
of ExQuiv(A) then it is always possible to find a minimal path ν from a such that b = νa.

Remark 3.4. In what follows, we will work with the ADE Dynkin graph ∆ and its affine counterpart ∆. Thus to
avoid confusion when considering subsets J ⊂ ∆ ⊂ ∆, we use the term spherical J-paths for the paths correspond-
ing to the ambient graph G = ∆ and reserve the unqualified term J-path to mean paths for G = ∆. It can be
seen that for such J, there is a natural bijective correspondence between spherical J-paths and J-paths in which
the symbol ν0 does not occur.

Constructing algebraic hearts via mutation (§§ 3.2 to 3.5)

§ 3.2 Modifying modules and Brenner–Butler theory. The approach we take to describing intermediate
algebraic t-structures on flmodΛ is via silting theory. Iyama–Wemyss [IW; IW14] observe that the theory is in
fact controlled by the combinatorics of certain reflexive R-modules, which they use to build a family of non-
commutative algebras starting from Λ which are derived equivalent to X. We summarise the results in a form
suitable for our purposes.

Definition 3.5. An R-module N is said to be modifying if it is basic, reflexive, and its endomorphism algebra
EndR(N) is Cohen–Macaulay. We say N is an modifying generator if in addition it contains R as a direct summand
(equivalently if it is Cohen–Macaulay).

The key example of a modifying generator for us is the module π∗𝒱
(
X
Z

)
, which Cohen–Macaulay with a Cohen–

Macaulay endomorphism algebra by [Van04, proposition 3.2.10].

For a modifying R-module N, we define the mutation class of N, written MMN(R), to be the set of isomorphism
classes of modifying R-modules that admit a two-term approximation by add(N) and further have the same
number of indecomposable summands as N. We write MMGN(R) ⊂ MMN(R) for the subset of modifying
generators in the mutation class.

Note that M lies in MMN(R) if and only if N lies in MMM(R) [IW, corollary 9.29], and in this case we say M
and N are modifying modules in the same mutation class. This defines an equivalence relation on the class
of modifying R-modules. Each mutation class then furnishes a family of derived-equivalent algebras via the
following Auslander–McKay type correspondence.

Theorem 3.6 [IW, theorem 9.25]. If M,N are modifying R-modules in the same mutation class then HomR(N,M)

is a (classical) reflexive tilting EndR(N)-module, and further every reflexive tilting EndR(N)-module arises in this way
from a unique module in MMN(R).

There is a natural isomorphism EndEndR N(HomR(N,M)) ∼= EndR(M) given by reflexive equivalence [IW14,
lemma 2.5]. Then as is standard, the tilting module HomR(N,M) in the above setup induces quasi-inverse
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derived equivalences

(7) Db(EndRN)
(−)⊗LHomR(N,M)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
RHom(HomR(N,M),−)

Db(EndRM) .

The Brenner–Butler theorem [see e.g. AHK, chapter 4, remark 3.10] relates the standard hearts under the above
equivalence. Namely, writing

T = {x ∈ modEndRN | Ext1(HomR(N,M), x) = 0},

F = {x ∈ modEndRN | Hom(HomR(N,M), x) = 0},

U = {y ∈ modEndRM | y⊗HomR(N,M) = 0},

V = {y ∈ modEndRM | Tor1(y,HomR(N,M)) = 0},

the theorem states that we have torsion pairs

modEndRN = T ∗ F, modEndRM = U ∗ V

and the equivalences (7) identify T →∼ V, F[1]→∼ U. In particular, the image of modEndRN is a (negative) tilt of
modEndRM. Equivalently, the image of modEndRM[−1] is a tilt of modEndRN.

We observe that the above equivalences and torsion pairs restrict verbatim to the subcategories of complexes
with finite length cohomology [see also SY13].

§ 3.3 Mutation of modifying modules. Iyama–Wemyss’ correspondence above is complemented by the fol-
lowing result which enables us to enumerate the entire mutation class of a modifying R-module by iterated
simple mutation from the starting seed.

Theorem 3.7. Let N be a modifying R-module with an indecomposable direct summand L ⊂ N. Then there exists a
unique (up to isomorphism) modifying module M ∈ MMN(R) such that M = (N/L) ⊕ K, where K is the kernel of a
minimal right add(N/L)-approximation of L. We sayM is obtained from N by simple mutation at L, and the following
statements hold.

(1) Simple mutation is involutive, i.e. K is an indecomposable summand of M and the corresponding simple mutation
is isomorphic to N.

(2) The moduleM is not isomorphic to N. Further, modules obtained from N by simple mutation at distinct summands
are non-isomorphic.

(3) Moreover, everyM ∈MMN(R) can be obtained from N by applying a finite sequence of simple mutations, i.e. there
is a sequence of modifying modules N =M0,M1, ...,Mn =M with indecomposable summands Li ⊂Mi such that
Mi+1 is obtained fromMi by simple mutation at Li.

(4) In the above statement, if M,N are both modifying generators then the sequence of simple mutations can be chosen
such that no summand Li is isomorphic to R, i.e. eachMi is also a modifying generator.

Proof. Since R is a complete local commutative Noetherian ring, any R-module admits a minimal right approxi-
mation by the additive closure of any other R-module. In particular the module M = (N/L) ⊕ K exists, and is
unique up to isomorphism since minimal approximations are so. By [IW14, lemma 4.11], M is modifying and
thus lies in MMN(R). SinceM,N then have the same number of indecomposable summands, it follows that K is
indecomposable. The remaining properties are reliant on the singularity of R being isolated, which guarantees
all mutations are Artinian. The statement (1) is [IW, corollary 9.28], while (2),(3), and (4) are consequences of
corollary 9.31 ibid.

Given the setup of our problem, we fix once and for all the choice of modifying generator N = π∗𝒱
(
X
Z

)
, which

has endomorphism algebra Λ = EndR(N) ∼= EndX 𝒱
(
X
Z

)
. The indecomposable summands of N (equivalently,

those of 𝒱
(
X
Z

)
) are in bijection with the integral exceptional curves in X by construction; the following lemma

recovers this bijection.
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Lemma 3.8. The vector bundle 𝒱
(
X
Z

)
has precisely one indecomposable summand (namely 𝒩0) isomorphic to 𝒪X. Further

for any non-free indecomposable summand 𝒩i ⊂ 𝒩 (i ∈ ∆ \ J), the closed subscheme c1(𝒩ǐ ) ⊂ X intersects the curve Ci

exactly once and is disjoint from Cj for j 6= i.

Proof. This is implicit in the construction of 𝒱
(
X
Z

)
, see [Van04, §§ 3.4 and 3.5].

The indexing of exceptional curves over ∆\J therefore furnishes a natural indexing of the summands of N over
∆ \ J. We now have the necessary ingredients to give MMN(R) the structure of a set with ∆-mutation.

Theorem 3.9 [IW]. EachM ∈MMN(R) can be assigned a unique subset 𝕁(M) ⊂ ∆ and a bijection between ∆ \ 𝕁(M)

and the indecomposable summands ofM (written i 7→Mi) such that the following hold.

(1) We have 𝕁(N) = J and Ni = π∗𝒩i for each i ∈ ∆ \ J.

(2) IfM ′ is obtained fromM by simple mutation atMi, then we have 𝕁(M ′) = νi 𝕁(M) andM ′j =Mj for j 6= ι(i).

Writing νiM for the simple mutation ofM atMi, this gives MMN(R) the structure of a set with ∆-mutation.

Theorem 3.7 implies that the exchange quiver ExQuiv(MMNR) is connected, with at most one arrow from any
vertex to another, and no arrow from a vertex to itself.

In particular given any M,M ′ ∈ MMN(R), there is a 𝕁(M)-path ν such that M ′ = νM. Further if M and M ′

are modifying generators then we necessarily have M0 = M ′0 = R and the path ν above can be chosen to be
spherical. Thus we have

MMN(R) = {νN | ν a J-path}, MMGN(R) = {νN | ν a spherical J-path}.

§ 3.4 The mutation functors. We now use the above description of MMN(R) to enumerate a large class of
torsion theories and intermediate hearts for H.

To set notation, given J-paths ν, µ we write µΛν = HomR(νN,µN) and note that this is a reflexive tilting
EndR(νN)-module by theorem 3.6. We omit the empty path ∅ from the notation, so for example we have
Λν = HomR(νN,N), νΛ = HomR(N,νN). Happily, this is consistent with Λ = HomR(N,N).

Then each module νN ∈ MMN(R) can be used to obtain two intermediate hearts in tilt(H). Indeed the con-
structions in (7) are symmetric in the input data so we obtain a tilting Λ-module νΛ and a tilting νΛν-module
Λν, which in turn give two mutation functors Dfl

νΛν ⇒ DflΛ defined as

Φν( - ) = ( - )⊗L
νΛ, Ψν( - ) = RHom(Λν, - ).

Accordingly, Brenner–Butler theory gives us torsion pairs

(8) flmodΛ = Tν ∗ Fν = Uν ∗ Vν,

Tν = {x ∈ flmodΛ | Ext1(νΛ, x) = 0} Uν = {x ∈ flmodΛ | x⊗Λν = 0}

Fν = {x ∈ flmodΛ | Hom(νΛ, x) = 0} Vν = {x ∈ flmodΛ | Tor1(x,Λν) = 0}

such that the squares below commute.

Dfl
νΛν DflΛ

flmodνΛν Fν[1] ∗ Tν

Φν

∼

∼

Dfl
νΛν DflΛ

flmodνΛν Vν ∗Uν[−1]

Ψν

∼

∼

Abusing notation to write H for the standard hearts flmodΛ ⊂ DflΛ as well as flmodνΛν ⊂ Dfl
νΛν, each J-path

ν thus gives us hearts

(9) ΦνH[−1] = Fν ∗ Tν[−1], ΨνH = Vν ∗Uν[−1].
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which are both intermediate with respect to H = flmodΛ.

Of course for the purpose of defining mutation functors there is nothing special about the choice of N and Λ,
and we can define the mutation functors and torsion theories starting at any modifying module. In particular
if we use the reversed path ν to analogously define the torsion theories

flmodνΛν = Uν ∗ Vν = Tν ∗ Fν,

then Φν, Ψν restrict to mutually inverse equivalences Uν � Fν[1], Vν � Tν, while Ψν, Φν restrict to equiva-
lences Tν � Vν, Fν � Uν[−1]. Thus the isomorphism ννN ∼= N in MMNR manifests itself as the identity of
functors

Φν ◦ Ψν
∼= Ψν ◦Φν

∼= id.

If ν has length 1, we call the corresponding mutation functors simple. To simplify notation, we write Φi for the
functor Φνi

corresponding to a simple mutation, likewise Ψi, Ui, Vi, Ti, Fi have the obvious meaning.

§ 3.5 Algebraic hearts constructed via mutation. Evidently, the hearts (9) are algebraic and so the torsion
theories (8) are functorially finite. Thus we have sub-posets of ftors(H), ftorf(H), alg-tilt(H) given by

tors−(H) = {Tν | ν is a J-path}, torf−(H) = {Fν | ν is a J-path}, tilt−(H) = {ΦνH[−1] | ν is a J-path},

tors+(H) = {Uν | ν is a J-path}, torf+(H) = {Vν | ν is a J-path}, tilt+(H) = {ΨνH | ν is a J-path}.

Each of the above sets is naturally in bijection with MMN(R) and the bijection simply identifies representative
J-paths. This is well-defined because the constructions of § 3.4 depend only on the end points of positive paths
in ExQuiv(MMNR). In other words, if ν, ν ′ are J-paths such that νN = ν ′N in MMN(R), then we also have
Tν = Tν′ , Uν = Uν′ , and so on.

This bijection also enhances the above subposets with the structure of a set with ∆-mutation, where for instance
the structure on tilt+(H) is given by writing 𝕁(ΨνH) = νJ and νi (ΨνH) = ΨνiνH whenever i ∈ ∆ \ νJ.

Further these bijections are compatible with the natural bijections among these sets, i.e. the bijections coming
from identifying J-paths coincide with the poset isomorphisms

(10)

(tors+H,⊆)op
(
torf+H,⊆

)

(
tilt+H,6

)

(tors−H,⊆)op
(
torf−H,⊆

)

(
tilt−H,6

)
obtained by restricting (2).

In what follows we analyse the structure of these sub-posets and how they sit in relation with other torsion
theories, first by examining the covering relations via tilting theory, and then by understanding the global
behaviour through convex geometric constructions.

§ 4 The partial order of algebraic tilts

Continuing to work with the notation of § 3, the aim of this section is to examine the local and global structure
of the partial orders tilt±(H) ⊆ alg-tilt(H) ⊆ tilt(H), and to prove the following result.

Theorem 4.1. The poset inclusions tilt±(H) ⊂ alg-tilt(H) ⊂ tilt(H) satisfy the following.

(1) There is a disjoint union decomposition alg-tilt(H) = tilt+(H)t tilt−(H). In particular, every algebraic heart that
is intermediate with respect to H is of the form ΦνH[−1] or ΨνH for some J-path ν.

(2) The sub-posets tilt+(H) and tilt−(H) are saturated in tilt(H), i.e. given K 6 K ′ 6 K ′′ in tilt(H) such that K,K ′′
lie in tilt+(H) (resp. tilt−(H)), then so does K ′.
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(3) Intervals in tilt+(H) and tilt−(H) are finite, i.e. if K,K ′ both lie in tilt+(H) (resp. tilt−(H)) and satisfy K 6 K ′,
then the interval [K,K ′] ⊂ tilt(H) contains finitely many elements.

Proof. Deferred until § 4.8.

Thus algebraic tilts of H all arise via mutation; this justifies the terminology ‘mutations of per
(
X
Z

)
’ used (e.g. in

the introduction) to refer to elements of alg-tilt(H).

Covering relations via tilting theory (§§ 4.1 to 4.3)

§ 4.1 The tilting order. The set reftilt(Λ) of reflexive tilting Λ-modules has a natural partial order [AI12,
theorem 2.11] with a well-understood Hasse quiver, and we can pull this across Iyama–Wemyss’ correspondence
(theorem 3.6) to get a partial order on MMN(R).

To describe the partial orders, recall that the bijection between MMN(R) and reftilt(Λ) given by theorem 3.6
is precisely the map νN 7→ νΛ. Thus every element of reftilt(Λ) can be written as νΛ for some J-path ν. Then
the order on reftilt(Λ) (and hence on MMN(R)) is given as

(11) νN > µN in MMN(R) ⇐⇒ νΛ > µΛ in reftiltΛ ⇐⇒ Ext1Λ(νΛ, µΛ) = 0.

The Hasse quiver of reftilt(Λ) is described in terms of mutation of tilting modules in indecomposable sum-
mands. Instead of giving the definition of mutation in this context, we note that combining [Kim24, theorem
4.3] and [IW, theorem 9.6] shows that the bijection HomR(N,−) : MMN(R) → reftilt(Λ) naturally induces a
bijection of indecomposable summands, and is compatible with mutation on both sides i.e. for M ∈ MMN(R)

and i ∈ ∆ \ 𝕁(M), the mutation of HomR(N,M) in the indecomposable summand HomR(N,Mi) is precisely
HomR(N,νiM).

By examining the corresponding result for reftilt(Λ), we now show that covering relations in the poset of
modifying modules correspond precisely to simple mutations.

Lemma 4.2. The poset MMN(R) with the partial order induced from reftilt(Λ) has a connected Hasse quiver with
maximal element N. For each M ∈ MMN(R) and i ∈ ∆ \ 𝕁(M), one of νiM ⋗ M or M ⋗ νiM must hold and
furthermore all covering relations (i.e. edges in the Hasse quiver) arise in this way.

Proof. It is clear that N is maximal since Λ is so in the tilting order. Likewise, two tilting Λ-modules are related
by a simple mutation if and only if they are related by a covering relation in the partial order [see e.g. IW18,
proposition 4.4(3)], and hence the same holds for MMN(R).

It follows that doubling the arrows of the Hasse quiver (i.e. adding an arrowM←M ′ for every existing arrow
M→M ′) yields precisely ExQuiv(MMNR). Since the exchange quiver is connected, so is the Hasse quiver.

In fact, examining the proof of [IW, proposition 9.19] which eventually shows that the exchange graph is
connected, we see that paths in the Hasse quiver can be made monotone in the following sense: if M is a
modifying R-module in the mutation class of N, then there is a positive path ν = νin ...νi1 such that M = νN

and there is a chain of covering relations N ⋗ νi1N ⋗ ... ⋗ νin ...νi1N. We say such positive paths are atomic.
Thus atomic paths are precisely those positive paths which lie in the Hasse quiver (considered a subquiver of
ExQuiv

(
MMNR

)
in the obvious way).

Note that if M is a module in MMN(R), then the mutation classes MMM(R) and MMN(R) coincide as sets.
However, the natural choices of partial orders on the two (induced by tilting orders of endomorphism algebras)
are distinct, and the superscript distinguishes the posets by indicating the maximal element.
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§ 4.2 Simple mutations give simple tilts.We will now prove a series of lemmas examining how tilting objects
and the induced intermediate hearts behave under simple mutations [see also HW18, §5].

Recall that for any M ∈ MMN(R), we write H for the natural heart flmod(EndRM) in Dfl(EndRM). Each
indecomposable summand Mi ⊂M (i ∈ ∆ \ 𝕁(M)) then gives an indecomposable projective (EndRM)-module
Pi = HomR(M,Mi), and hence a dual simple module Si ∈ H.

To establish the result betrayed by the title of this subsection, i.e. that simple mutations correspond precisely
to simple tilts, it is necessary to track simple objects under mutation functors.

Lemma 4.3. For i ∈ ∆ \ J and Si ∈ flmodΛ, we have Ψι(i)(Si) = Φ
−1
i (Si) = Sι(i)[−1] ∈ Dfl

νi
Λνi

.

Proof. This is [HW18, lemma 5.3], the only change is how we are indexing the simples.

We now show that the intermediate heartsΦiH[−1] and ΨiH are precisely simple tilts corresponding to Si.

Lemma 4.4. For i ∈ ∆ \ J, we have Ti = ⊥{Si}, Fi = 〈Si〉 and Ui = 〈Si〉, Vi = {Si}
⊥.

Proof. Since νi
Λ is a mutation of the tilting module Λ at an indecomposable summand with Λ > νi

Λ in the
tilting order, there is an exact sequence

0→ Λ→ P ′ → νi
Λ→ 0

with P ′ ∈ add{Pj | j 6= i}. Since Hom(Pj, Si) = 0 for j 6= i, the exact sequence gives us Hom(νi
Λ, Si) = 0 showing

Si ∈ Fi. On the other hand if x ∈ ⊥{Si} then there is a projective cover P → x → 0 with P ∈ add{Pj | j 6= i}, so
noting that νi

Λ has projective dimension 6 1 we get an exact sequence Ext1(νi
Λ, P) → Ext1(νi

Λ, x) → 0. But
P ∈ add(νi

Λ) and νi
Λ has no self-extensions, so in fact all the terms in the sequence must vanish and we have

x ∈ Ti. Thus we have shown ⊥{Si} ⊆ Ti and 〈Si〉 ⊆ Fi, and it is clear that equality must hold.

To conclude, note that we have Ui = Ψi(Fι(i))[1] = Ψi〈Sι(i)〉[1] = 〈Si〉 where we use lemma 4.3 and that
equivalences commute with extension closure. The equality Vi = {Si}

⊥ follows.

The final result in the subsection extends lemma 4.3 and examines the behaviour of other simples under simple
mutations by tracking their K-theory classes.

Lemma 4.5. For i ∈ ∆ \ J, let the integers (bj)j∈∆\(J+i) be such that Ni has minimal add(N/Ni)-approximation

0→ Ni →
⊕

j∈∆\(J+i)

N
⊕bj

j .

Then for a simple Sj ∈ flmodνi
Λνi

with j 6= ι(i), we have thatΦi(Sj) andΨi(Sj) lie in the subcategory 〈Si, Sj〉 ⊂ flmodΛ.
Further, in any Jordan–Hölder filtration of Φi(Sj) (resp. Ψi(Sj)), the simple Sj occurs exactly once while the simple Si
occurs bj times.

Proof. It is clear from lemma 4.4 that both Φi(Sj) and Ψi(Sj) are modules, in particular Φi(Sj) = Sj ⊗ νi
Λ and

Ψi(Sj) = Hom(Λνi
, Sj). The result then is [Wem18, lemma 5.7].

§ 4.3 Composing simple tilts. By comparing paths in Hasse quivers, we now establish that the mutation order
is compatible with the standard order (6) on tilt±(H), equivalently the containment orders on tors±(H) and
torf±(H). For this, it is necessary to understand how mutation functors compose.

Theorem 4.6. Let ν be a positive path starting at N, and i ∈ ∆ \ νJ. Then the following are equivalent:

(1) νN > νiνN in MMN(R).

(2a) Tν ⊃ Tνiν, equivalently Fν ⊂ Fνiν.
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(2b) Fνiν = ΦνFi ∗ Fν, equivalently Tνiν = ΦνTi ∩ Tν.

(2c) In flmodνΛν we have Si ∈ Φ−1
ν Tν.

(2d) The heart Φν(ΦiH)[−1] ⊂ DflΛ is intermediate with respect to H, i.e. lies in H[−1, 0] .

(2e) There is a natural isomorphism of functors Φνiν
∼= Φν ◦Φi.

(3a) Uν ⊂ Uνiν, equivalently Vν ⊃ Vνiν.

(3b) Uνiν = Uν ∗ ΨνUi, equivalently Vνiν = Vν ∩ ΨνVi

(3c) In flmodνΛν we have Si ∈ Ψ−1
ν Vν.

(3d) The heart Ψν(ΨiH) ⊂ DflΛ is intermediate with respect to H.

(3e) There is a natural isomorphism of functors Ψνiν
∼= Ψν ◦ Ψi.

(4) There is an isomorphism of bimodules νiνΛ
∼= νiνΛν ⊗L

νΛ, where the tensor product is over νΛν.

Before proving the above theorem, we note some immediate consequences.

Corollary 4.7. If ν is a J-path and i ∈ ∆ \ νJ is such that νN > νiνN, then tilt(H) has covering relations

ΦνH[−1]⋖ΦνiνH[−1], ΨνH⋗ ΨνiνH

with brick labels ΦνSi and ΨνSi respectively. Further, every covering relation in tilt(H) which involves an element of
tilt±(H) is of the above form. Thus the bijections of MMN(R) with tilt±(H) induce an isomorphism of the Hasse quiver
of (MMNR,6) with that of (tilt+H,6) and that of (tilt−H,6)op.

Proof. That the relations written are covering with the given brick label is immediate.

Now if we have K ⋖ ΨνH in tilt(H), then by theorem 2.4 the corresponding brick label b is a simple object of
ΨνH which lies in H∩ΨνH = Vν and K is the tilt of ΨνH in the torsion class 〈b〉. In particular, we have b = ΨνSi

for some i ∈ ∆ \ J, so that theorem 4.6 ((3c)⇒(1)) gives us νN > νiνN and further K = ΨνiνH.

An analogous reasoning shows covering relations of the form K⋗ΨνH, K⋖ΦνH[−1], and K⋗ΦνH[−1] are also
of the given form.

Remark 4.8. The above result as stated does not imply that the bijection MMN(R)→ tilt+(H) is an isomorphism
of posets. Indeed it is possible for non-isomorphic posets to have isomorphic Hasse quivers, for example compare
the posets {

± 1
n

∣∣∣∣ n ∈ ℕ
}
⊂ (ℚ,6), (ℕ,6) t (ℕ,6)op.

Thus we need to eliminate the possibility of Hasse(MMNR) having infinite bounded intervals, which we do in
§ 4.8 by leveraging global structural results on the convex-geometric counterpart of this poset.

Corollary 4.9. Given a positive path ν = νin ...νi1 starting at N, one can write Φν = Υi1 ◦ Υi2 ◦ ... ◦ Υin for some
sequence of simple mutations Υi ∈ {Φi, Ψi}. Further if the path ν is atomic (i.e. N > νi1N > νi2νi1N > ... > νN), then
each Υi above is of the form Φi and we have Φν = Φi1 ◦Φi2 ◦ ... ◦Φin .

The analogous statement holds for Ψν.

Proof. For n > 1 we may write ν = νiν
′ where i = in and ν ′ = νin−1

...νi1 is a shorter path. By lemma 4.2 we
have either ν ′N > νN or νN > ν ′N in MMN(R). In the first case theorem 4.6 gives us Φν = Φν′ ◦Φi, while in
the latter case we write ν ′ = νι(i)ν to get Φν = Φν′ ◦ (Φι(i))

−1 = Φν′ ◦Ψi. The result follows by induction.
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We now prove theorem 4.6 in parts, showing (1) is equivalent to (2a)–(2e) and to (4). Proving the equivalence of
(1) with (3a)–(3e) is entirely analogous. Note also that in (2a), (2b), (3a), and (3b), the equivalence of the two
involved clauses follows from formal properties of torsion theories– for instance whenever H = T ∗F = T ′ ∗F ′ are
two torsion pairs with T ⊂ T ′, then T ′ ∩ F is a torsion class in the Abelian category F ∗ T [−1] with corresponding
torsion-free class F ′ ∗ T [−1].

The statements (2e)⇒(2d) and (2b)⇒(2a) are immediate, while (4)⇒(2e) follows from the ⊗L–RHom adjunc-
tion [IR08, lemma 2.10]. Likewise the following are straightforward from the definitions of the involved torsion
theories.

Proof of (2a)⇒(1). If (1) does not hold, then necessarily νiνN > νN by lemma 4.2 and hence there is a
y ∈ add νΛ and an exact sequence

0→ νiνΛ→ y→ νΛ→ 0.

In particular for x ∈ Tν, we have Ext1(νΛ, x) = 0 and hence Ext1(y, x) = 0. Since Ext2(νΛ, x) = 0 for projective
dimension reasons, the long exact sequence associated to Hom(−, x) shows Ext1(νiνΛ, x) = 0 i.e. x ∈ Tνiν.
Thus we have Tνiν ⊇ Tν, i.e. (2a) does not hold.

Proof of (2e) ⇒(2b). Using Φνiν = Φν ◦Φi, we have Tνiν = H ∩ΦνiνH = H ∩Φν(ΦiH) = H ∩ (ΦνFi[1] ∗ΦνTi).

But since ΦνFi ⊂ H[0, 1], we have ΦνFi[1] ∩H = {0} and hence Tνiν = ΦνTi ∩H . Likewise writing H = Tν ∗ Fν,
we observe that ΦνTi ⊂ ΦνH = Fν[1] ∗ Tν, and hence ΦνTi ∩ Fν = {0}. Thus we have Tνiν = ΦνTi ∩ Tν as
required.

Proof of (2d)⇒(2c). If (2c) does not hold, then noting that H = Φ−1
ν Fν[1] ∗Φ−1

ν Tν is a torsion theory on Dfl
νΛν,

we have that Si ∈ Φ−1
ν Fν[1] and henceΦνSi ∈ Fν[1] ⊂ H[1]. But then we see thatΦν(ΦiH)[−1] = ΦνFi∗ΦνTi[−1]

contains the object ΦνSi (since Si ∈ Fi) and hence cannot be intermediate.

The statement (1)⇒(4) is proven in [HW18, theorem 4.6], we state the proof here for convenience.

Proof of (1) ⇒(4). If we have νN > νiνN, then by definition of the mutation order we have νΛ > νiνΛ as tilting
Λ-modules. Then applying [HW18, proposition B.1] with T = νΛ and Γ = νΛν, we see that there is a Λ-module
isomorphism νiνΛν ⊗L

νΛ ∼= νiνΛ. To show this is a bimodule isomorphism, first note that νiνΛν ⊗L
νΛ is

concentrated in degree zero so we can replace the tensor product with its non-derived version. Then the given
isomorphism of Λ-modules factors as

νiνΛν ⊗ νΛ
∼−−−−→ HomΛ(νΛ, νiνΛ)⊗ νΛ

∼−−−−→ νiνΛ,

where the first is reflexive equivalence HomΛ(HomR(N,νN),HomR(N, νiνN)) ∼= HomR(νN, νiνN) and the
second is the evaluation map. Both of these preserve the (νiνΛνiν)

op-module structure, hence we have an
isomorphism of bimodules as required.

Note that we have proven the chain of equivalences (1)⇒ (4)⇒ (2e)⇒ (2b)⇒ (2a)⇒ (1). Since we also have
(2e)⇒(2d)⇒(2c), showing (2c)⇒(1) will finish the proof of theorem 4.6.

Proof of (2c) ⇒(1). This is essentially [HW18, lemma 5.4]. If (1) does not hold, then by lemma 4.2 we must have
νiνN > νN = νι(i)νiνN. Thus applying (1)⇒(2e) to this chain of mutations, we have Φν = Φνiν ◦Φι(i) and
hence by lemma 4.3, Φν(Si) = Φνiν(Sι(i))[1]. But noting Φνiν(Sι(i)) ∈ ΦνiνH ⊂ H[0, 1], we immediately have
that Φν(Si) /∈ H and hence Si /∈ Φ−1

ν Tν as required.

In subsequent sections, we shed more light on the structure of these posets by constructing the associated heart
cones and relating the order to convex-geometric data.
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Partial orders via Coxeter geometry (§§ 4.4 to 4.8)

§ 4.4 Restricted root systems of affine type. The K-theoretic McKay correspondence for minimal surfaces
[GV83] identifies the Grothendieck group of the category of coherent sheaves with the root lattice of an affine
Dynkin diagram, and this identification is such that the action of spherical twist functors on K-theory is precisely
by reflections in the Weyl group. In the more general setting of a crepant partial resolution (in particular the
flopping contraction X→ Z we are concerned with), Iyama–Wemyss [IW] develop analogous combinatorics of
restricted root systems to describe the K-theory.

The affine root lattice. We recap the unrestricted (Coxeter) setting first, see [Kac80, §1] for a detailed
introduction. Given the affine Dynkin diagram ∆ of rank n, the root lattice h = h(∆) is a free ℤ-module with
basis given by the simple roots {αi | i ∈ ∆}. The Cartan matrix associated to ∆ gives a degenerate symmetric
bilinear form (−,−) on h, and we use these to define the simple reflections si : h→ h (i ∈ ∆) given by

(12) si(αj) = αj − (αi, αj)αi.

These define the Weyl group W(∆) = 〈si | i ∈ ∆〉 ⊂ GL(h), which is isomorphic to the Coxeter group associ-
ated to ∆ with standard generators {si | i ∈ ∆}. In fact each subset J ⊆ ∆ determines a parabolic subgroup
W(J) = 〈si | i ∈ J〉 ⊆ W(∆), which is the Coxeter group associated to the full subgraph spanned by J. If J 6= ∆

then this is a finite Coxeter group, and hence has a unique Coxeter element wJ (defined to be the longest
element in the Bruhat order).

We say the set of real roots Root(∆) is the union of W(∆)-orbits of the simple roots. We say a real root is positive if
it can be expressed as a non-negative linear combination of the simple roots, and write Root+(∆) for the set of
positive real roots. The set Root−(∆) of negative real roots is defined likewise. Every real root is either positive or
negative, and the map α 7→ −α gives a bijection between Root+(∆) and Root−(∆). In fact for each real root α,
there is a unique reflection s (i.e. an element of order 2) in W(∆) such that s(α) = −α, and this gives a bijection
between the set of positive real roots and the set of reflections in the Weyl group.

Vertices in the diagram ∆ can be Lie-theoretically assigned numerical labels (δi)i∈∆ which are computed and
given for each Dynkin type in [Kac80, table Z]. This is always a tuple of positive integers, and the ‘extended’
vertex 0 ∈ ∆ \ ∆ is assigned the integer δ0 = 1. Then the vector δ =

∑
i∈∆ δiαi is called the primitive positive

imaginary root in h, and any non-zero multiple of δ is called an imaginary root. The root system of ∆ is then the set
of all (real and imaginary) roots in h, and is preserved by the action of the Weyl group which acts transitively
on Root(∆) and fixes δ.

Restricted roots. Suppose I ⊂ ∆ is a subset and |∆\I| > 2. This defines a decomposition h(∆) = h(I)⊕h(∆\I),
where we write h(I) for the span of the simple roots {αi | i ∈ I} (and define h(∆ \ I) likewise). We say h(∆ \ I)

is the restricted root lattice associated to I, and the restricted root system is the image of the root system under
the surjection h(∆) � h(∆ \ I). The notions of restricted (simple, positive, negative) real roots and restricted
imaginary roots are defined likewise as the non-zero images of the corresponding objects in h. In particular there
are |∆\I| restricted simple roots {αi | i ∈ ∆\I}, and a primitive positive restricted imaginary root δI =

∑
i∈∆\I δiαi.

Writing Root(∆, I) for the set of restricted real roots (and defining the subsets Root±(∆, I) of positive and
negative restricted real roots accordingly), we thus see that the restricted root system is given as

Root+(∆, I) t Root−(∆, I)︸ ︷︷ ︸
Root(∆,I)

t {nδI | n ∈ ℤ \ {0}}.

To obtain the analog of a Weyl-group action for restricted roots, it is necessary to consider simultaneously all
restricted root lattices h(∆ \ νI) ranging over I-paths ν. In the Coxeter setting, a simple reflection si ∈ W(∆)

was characterised by the property of being an involution such that si(αj) − αj is equal to −2αi if j = i, and is
a non-negative multiple of αi otherwise. Iyama–Wemyss suggest the following generalisation for restricted root
systems.
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Proposition 4.10 [NW23, lemmas 5.1 and 5.2]. For I ⊂ ∆ and i ∈ ∆ \ I, the linear map h→ h given by the action
of wIwI+i ∈W(∆) maps the subset h(νiI) isomorphically onto h(I), thus inducing an isomorphism

(13)

h h

h(∆ \ νiI) h(∆ \ I)

wIwI+i

φi

∼

This map preserves the root systems, in particular acting on the simple roots and the primitive positive imaginary root as

φi(δνiI) = δI, φi(αι(i)) = −αi, φi(αj) − αj ∈ ℤ⩾0 · αi (j 6= i).

Further, defining φι(i) : h(∆ \ I)→ h(∆ \ νiI) analogously, we have φι(i) = (φi)
−1.

In what follows, we will show that the K-theory of flmodνΛν can be naturally identified with h(∆ \ νJ), where
the classes of simple objects {[Si] | i ∈ ∆ \ νJ} play the role of simple roots and the linear maps φi are precisely
the ones induced by simple mutation functors Φi, Ψi.

§ 4.5 Intersection arrangements. An important tool in the study of root systems and Weyl group actions is
the study of the dual representation. Let h be the root lattice associated to ∆ as in the previous section, with
the action of W(∆) as described. The dual action on the Euclidean space Θ = Homℤ(h,ℝ) preserves each of
the subsets {δ > 0}, {δ < 0}, and {δ < 0}, and the fundamental domains for the respective actions have closures
given by the cones

C+ = {θ ∈ Θ | θ(αi) > 0 for all i ∈ ∆}, C− = −C+,

C0 = {θ ∈ Θ | θ(αi) > 0 for all i ∈ ∆, θ(δ) = 0}.

Further the faces of wC+ are all given by wC+
J for some subset J ⊂ ∆, where

C+
J = C+ ∩

⋂
i∈J

{αi = 0}.

The faces wC−
J ⊆ wC− (J ⊆ ∆) and wC0

J ⊆ wC0 (J ⊆ ∆) are given likewise, and as a consequence we have a
complete simplicial fan in Θ called the Weyl arrangement given as

(14) Arr(∆) =
{
wC+

J | J ⊆ ∆, w ∈W(∆)
}︸ ︷︷ ︸

Arr+(∆)

∪
{
wC0

J | J ⊆ ∆, w ∈W(∆)
}︸ ︷︷ ︸

Arr(∆)

∪
{
wC−

J | J ⊆ ∆, w ∈W(∆)
}︸ ︷︷ ︸

Arr−(∆)

.

The Weyl arrangement is induced by the root system for ∆, in the sense that every face can be described as the
intersection of half-spaces defined by root hyperplanes {α = 0}. Further each such hyperplane is corresponds to
a unique positive root in Root+(∆) ∪ {δ}.

The subfan Arr+(∆) is supported on the rational subset {δ > 0} ∪ {0}, and is called the Tits cone. The subfan
Arr(∆) is supported on {δ = 0}, and induces a complete simplicial fan on this hyperplane. Further it has finitely
many cones which are indexed over the parabolic subgroup W(∆). This is possible because W(∆) decomposes
as a semi-direct product of W(∆) and the coroot lattice, and the action on {δ = 0} is such that W(∆) acts
faithfully while the coroot lattice fixes the hyperplane pointwise.

We write Cham(∆) for the set of maximal cones (chambers) in Arr+(∆), noting that subfans Arr+(∆) and Arr−(∆)
are isomorphic so it suffices to consider just one of them. Likewise, we write Cham(∆) for the set of chambers
in Arr(∆).

Now a subset I ⊂ ∆ with |∆ \ I| > 2 defines the restricted root lattice h(∆ \ I), which we view as a split quotient
of h. Accordingly, the dual Euclidean space Θ(∆ \ I) = Homℤ(h(∆ \ I),ℝ) can be identified with the subspace⋂

i∈I{αi = 0} ⊂ Θ. Since the subspace is defined by root hyperplanes, every cone σ ∈ Arr(∆) intersects Θ(∆ \I)

in a face of σ, whence the Weyl arrangement induces a complete simplicial fan

Arr(∆, I) = {σ ∩Θ(∆ \ I) | σ ∈ Arr+(∆)}︸ ︷︷ ︸
Arr+(∆,I)

∪ {σ ∩Θ(∆ \ I) | σ ∈ Arr(∆)}︸ ︷︷ ︸
Arr(∆,I)

∪ {σ ∩Θ(∆ \ I) | σ ∈ Arr−(∆)}︸ ︷︷ ︸
Arr−(∆,I)
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called the (full) I-cone arrangement. This is precisely the subfan of Arr(∆) supported on Θ(∆ \ I). It can be seen
that the I-cone arrangement is induced by the restricted root system associated to I ⊂ ∆.

+0
–

{δJ = 0}{δJ + 1 = 0} {δJ − 1 = 0}

Figure 5. Representative affine slices of the E7,4 arrangement, associated to the Dynkin data (J = {2, 3, 5, 6, 7}) as
in fig. 4. The principal chambers C+

J ,C0
J ,C−

J are indicated by the symbols +,0,– respectively.

The subfan Arr+(∆, I), called the Tits cone, contains infinitely many cones and is supported on the subset
{δI > 0}∪{0}. The subfan Arr(∆, I) on the other hand is a complete simplicial fan on the hyperplane {δI = 0}, with
finitely many cones whose combinatorics are controlled by the ADE Dynkin diagram ∆. We write Cham(∆, I) for
the subset of maximal cones in Arr+(∆, I), and Cham(∆, I) for the subset of maximal cones in Arr(∆, I).

Simple wall crossings. Any chamber wC+ ∈ Cham(∆) has |∆| codimension-one faces (walls), where the ith
wall wC+

{i}
spans the root hyperplane {wαi = 0}. The wall wC+

{i}
is a face of precisely one other chamber, which

lies on the ‘other side’ of this hyperplane. Examining (12) shows that this chamber is given by wsiC+, and
we say wsiC+ is obtained from wC+ by a simple wall crossing. Since every w ∈ W(∆) is a product of simple
reflections, it follows that any two chambers in Cham(∆) are connected by a finite sequence of simple wall
crossings. The analogous statement holds for Cham(∆).

Iyama–Wemyss [IW, §1] show that while there may not be an underlying group action on the chambers of the
I-cone arrangement, one can navigate between them by analogous wall-crossing combinatorics. To explain the
construction, we first note that if σ ∈ Arr(∆) can be expressed as wC+

J = w ′C+
J′ , then we must have J = J ′

and wW(J) = w ′W(J ′) as cosets. Thus for each σ ∈ Cham(∆, I) there is a unique subset 𝕁(σ) ⊂ ∆ such that σ
can be expressed as σ = wC+

𝕁(σ). Further the codimension-one faces of σ are in bijection with ∆ \ 𝕁(σ), where
i ∈ ∆ \ 𝕁(σ) determines the face σi = wC𝕁(σ)+i. We then have the following.

Lemma 4.11 [IW, lemma 1.23]. Given σ ∈ Cham(∆, I) and i ∈ ∆ \ 𝕁(σ), there is a unique cone νiσ ∈ Cham(∆, I)

which satisfies νiσ∩ σ = σi, which we call the simple wall crossing of σ at i. Explicitly, if σ = wC+
J then this cone is

given by
νi ·wC+

J = w ·wJwJ+i ·C+
νiJ
.

This gives Cham(∆, I) the structure of a set with ∆-mutation, i.e. we have 𝕁(νiσ) = νi𝕁(σ) and νι(i)νiσ = σ. Moreover,
this set has a connected exchange quiver (i.e. any two chambers in Cham(∆, I) are connected by a finite sequence of simple
wall crossings.)

Analogously, Cham(∆, I) equipped with the data of simple wall crossings is a set with ∆-mutation, and this has a finite
and connected exchange quiver.
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Figure 6. Continuing fig. 5, some wall cross-
ings in the E7,4 Tits cone are indicated. Within
each chamber σ, the walls are labelled by indices
i ∈ ∆\𝕁(σ) such that crossing the ith wall lands in
the adjacent chamber νiσ.

∆ =
1 2 3 4 5 6

7

0

+

ν4ν1ν0C+
Jν4ν1ν0C+
J

ν4ν0ν1C+
J

The cone C+
I lies in the I-cone arrangement, and it can be seen that the simple wall crossing νiC+

I is precisely
the image of C+

νiI
∈ Cham(∆, νiI) under the map

(φǐ )
−1 : Θ(∆ \ νiI)→ Θ(∆ \ I)

transpose to the map (13). More generally, if ν = νin ...νi1 is an I-path then the cone νC+
I is the image

of C+
νI ∈ Cham(∆, νI) under the map ((φin ◦ ... ◦ φi1 )̌ )

−1. Every chamber in the Tits cone of the I-cone
arrangement has this form.

Simple wall crossing from a maximal cone in Arr−(∆, I) is defined likewise. This is such that if ν is an I-path
then we have νC−

I = −νC+
I , and every maximal cone in Arr−(∆, I) is of this form.

Similarly each σ ∈ Arr(∆, I) can be assigned a unique subset 𝕁(σ) ⊂ ∆ such that we have σ = wC0
𝕁(σ). The

codimension-one faces of σ are thus in bijection with ∆ \ 𝕁(σ), and a statement analogous to lemma 4.11 holds
showing that Cham(∆, I) is a set with ∆-mutation and a connected exchange quiver.

In particular if we write C0
I = C0 ∩Θ(∆ \ I) (even when I does not lie in ∆), we see that every σ ∈ Cham(∆, I)

can be written as νC0
I for some spherical 𝕁

(
C0

I

)
-path ν. We remark that 𝕁

(
C0

I

)
= I if and only if I ⊂ ∆.

It follows that if I ⊂ ∆, then the I-cone arrangement can be explicitly described as

(15) Arr(∆, I) =
⋃

ν an I-path

faces
(
νC+

I

)
︸ ︷︷ ︸

Arr+(∆,I)

∪
⋃

ν a spherical
I-path

faces
(
νC0

I

)
︸ ︷︷ ︸

Arr0(∆,I)

∪
⋃

ν an I-path

faces
(
νC−

I

)
︸ ︷︷ ︸

Arr−(∆,I)

.

§ 4.6 The partial order on chambers. The I-cone arrangement is induced by the restricted root system,
hence every chamber σ ∈ Cham(∆, I) is determined by the subset of positive roots which σ lies in the ‘negative
half-space’ of, namely

[σ 6 0] :=
{
α ∈ Root+(∆, I) | σ ⊂ {α 6 0}

}
.

This assignment gives a partial order Cham(∆, I) given by

σ 6 σ ′ ⇐⇒ [σ 6 0] ⊆ [σ ′ 6 0].

Clearly the chamber C+
I is minimal with respect to this order since we have [C+

I 6 0] = ∅, and hence for a
general σ ∈ Cham(∆, I), the set [σ 6 0] determines the hyperplanes which ‘separate’ σ and C+

I . We now exhibit
various properties of this partial order.

Lemma 4.12. Bounded intervals in the poset Cham(∆, I) are finite, i.e. if σ, σ ′ ∈ Cham(∆, I) satisfy σ ′ 6 σ, then
there are finitely many chambers in the interval [σ ′, σ].
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Proof. It suffices to show the set [σ 6 0] is finite for any σ ∈ Cham(∆, I), i.e. σ and C+
I are separated by finitely

many hyperplanes. Now we can write the Tits cone as the nested union of ‘boxes’

{δI > 0} ∪ {0} =
⋃
N⩾0

{
θ ∈ Θ(∆ \ J)

∣∣ −NδJ(θ) 6 αi(θ) 6 NδJ(θ) for all i ∈ ∆ \ J
}
.

In particular, both σ and C+
I lie in some sufficiently large box⋂

i∈∆\J

{αi +NδJ > 0} ∩ {αi −NδJ 6 0}

for N � 0 (see figure beside for a representative box in the E7,4

Tits cone with N = 2). But each box is cut only by finitely many
root hyperplanes, since the intersection of any box with the level set
{δI = 1} is compact and the root hyperplanes form a locally finite
arrangement away from the origin. The conclusion then follows
since any hyperplane separating σ and C+

I must pass through this
box.

+

σ

{α4 = 2δJ}

{α4 = −2δJ}

{α
1
=

−
2δ

J
}

{α
1
=

2δ
J
}

{
α
0

=
2
δ
J
}

{
α
0

=
−

2
δ
J
}

The boxes appearing in the above proof also provide upper bounds on the sizes of intervals in the partial order.
Building upon this notion, we make the following definition.

Definition 4.13. The lower polytope of σ ∈ Cham(∆, J), written Pol(σ), is the subset of Θ(∆, J) given by the
union of cones

⋃
σ′⩽σ σ

′.

Lemma 4.14. The lower polytope of any chamber σ ∈ Cham(∆, J) is a convex polyhedral cone.

Proof. Write [σ > 0] = Root+(∆, J) \ [σ 6 0] for the collection
of positive roots whose associated hyperplane does not separate σ
and C+

J . Then a chamber σ ′ satisfies σ ′ 6 σ if and only if we have
[σ ′ > 0] ⊇ [σ > 0], i.e. σ ′ lies in the half space {α > 0} for every
α ∈ [σ > 0]. Since any intersection of root half-spaces is a union of
chambers, it follows that we have

Pol(σ) =
⋂

α∈[σ⩾0]

{α > 0},

and hence the lower polytope being an intersection of convex sets
is convex. Since it is the union of finitely many polyhedral cones,
it is one too.

+

σ

Pol(σ)

The poset Cham(∆, J) is also particularly amiable to the study of paths and covering relations.

Lemma 4.15. For each σ ∈ Cham(∆, I) and i ∈ ∆ \ J(σ), we either have σ⋖ νiσ or σ⋗ νiσ.

Proof. By definition of simple wall crossing there is precisely one hyperplane that separates σ and νiσ, i.e. σ
and νiσ lie on the same side of all root hyperplanes except for one. Thus one of the sets [σ 6 0], [νiσ 6 0] is
contained in the other, and their difference contains exactly one element. The result follows.

Lemma 4.16. Given σ ∈ Cham(∆, I) and a positive path ν = νin ...νi1 from σ such that σ 6 νσ, the following are
equivalent.

(1) ν is minimal, i.e. ν has minimal length among all positive paths from σ to νσ.
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(2) ν is reduced, i.e. ν crosses each root hyperplane at most once.

(3) the length of ν is equal to the number of hyperplanes separating σ and νσ, i.e. the set [νσ 6 0] \ [σ 6 0] contains n
elements.

(4) ν is atomic, i.e. successive truncations of ν give us a sequence σ < νi1σ < νi2νi1σ < ... < νσ.

Proof. Since the arrangement of root hyperplanes is locally finite away from 0, we have the equivalence (1)⇐⇒ (2)
[see for example Sal87, lemma 2]. Further, the implications (4)⇒(3)⇒(1) are immediate where for the latter we
note that any positive path must cross each separating hyperplane at least once. Lastly, suppose ν is reduced but
not atomic, i.e. we have νij−1

...νi1σ > νij ...νi1σ for some j. Thus there is a positive root α such that ν passes
from {α 6 0} into {α > 0}, and since this hyperplane is crossed exactly once, we therefore have α ∈ [σ 6 0] but
α /∈ [νσ 6 0]. This contradicts σ 6 νσ, thus showing (2)⇒(4).

Now any two chambers in a locally finite hyperplane arrangement can be connected by a reduced path. It
follows that every relation in the poset Cham(∆, I) is realised by the Hasse quiver, i.e. we have σ < σ ′ if and
only if there is a chain of covering relations σ = σ0 ⋖ ...⋖σn = σ ′. This also shows that every covering relation
in the poset must arise from simple wall crossing as in lemma 4.15, so that the Hasse quiver is a subquiver of the
exchange quiver in the obvious way and a positive path is atomic if and only if it lies in the Hasse quiver.

Since the Hasse quiver of Cham(∆, I) realises all relations, we have the following consequence.

Proposition 4.17. Suppose (P,6) is a poset and f : Cham(∆, I) → P is a bijection that induces an isomorphism of
Hasse quivers. Then f is an isomorphism of posets.

§ 4.7 Mutation functors and Grothendieck groups. We now show that the K-theoretic maps induced by
the mutation functors Φν, Ψν obey the same combinatorial rules which govern mutations of root lattices. To
explain this, note that for any J-path ν, theorem 3.9 gives a unique way to index the simples of flmodνΛν over the
vertices of ∆ \νJ. Further, J is a proper subset of ∆ by construction, and hence we see that |∆ \νJ| = |∆ \J| > 2.
Thus the restricted root lattice h(∆ \ νJ) is defined and can be identified with K νΛν by mapping the classes of
simples to simple restricted roots. We then have the following.

Lemma 4.18. For i ∈ ∆ \ J, the simple mutation functors Φi, Ψi : Dfl
νi
Λνi

→ DflΛ both induce the same map on
K-theory and this agrees with the map φi : h(∆ \ νiJ)→ h(∆ \ J) as in (13).

The proof, which fleshes out [NW23, remark 5.2], uses silting theory of contracted preprojective algebras, and
is deferred until the end of this subsection. Combined with corollary 4.9, the above lemma immediately shows
that if ν = νin ...νi1 is a J-path then the map on K-theory induced by Φν and Ψν agrees with the composite
φin ◦ ... ◦φi1 . In particular, we have the following.

Corollary 4.19. If ν is a J-path and Sj is a simple νΛν-module, then the object Φν(Sj) (resp. Ψν(Sj)) has K-theory
class given by a primitive positive restricted root in h(∆ \ J).

More importantly, we can use lemma 2.10 and the discussion following lemma 4.11 to read off the dual cones
of hearts in tilt±(H) which are obtained from H = flmodΛ by mutation.

Theorem 4.20. For each J-path ν, the cones νC±J ⊂ Θ(∆ \ J) are heart cones in HFan(H). In particular, these are
described as

C(ΨνH) = νC+
J , C(ΦνH[−1]) = νC−

J

and therefore the associated numerical torsion theories and intermediate hearts are

Htr(νC+
J ) = H

tr(νC+
J ) = Uν, Htf(νC+

J ) = H
tf(νC+

J ) = Vν, Htt(νC+
J ) = H

tt(νC+
J ) = ΨνH,

Htr(νC−
J ) = H

tr(νC−
J ) = Tν, Htf(νC−

J ) = H
tf(νC−

J ) = Fν, Htt(νC−
J ) = H

tt(νC−
J ) = ΦνH[−1].
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Corollary 4.21 (Theorem 4.1 (1)). Every algebraic heart in tilt(H) lies in exactly one of the subsets tilt+(H) or tilt−(H),
i.e. is either equal to ΨνH or to ΦνH[−1] for some J-path ν. Thus we have disjoint-union decompositions

alg-tilt(H) = tilt+(H) t tilt−(H), ftors(H) = tors+(H) t tors−(H), ftorf(H) = torf+(H) t torf−(H).

Proof. If K ∈ tilt(H) is algebraic, then by theorem 2.11 we have that C(K) is a full dimensional simplicial cone
in HFan(H) and further K the unique intermediate heart with this heart cone. But from theorem 4.20 we see
that the union of Tits cones ⋃

faces(νC+
J ) ∪

⋃
faces(νC−

J )

defines a subfan of HFan(H) supported on the complement of the hyperplane Θ0(∆ \ J). The cone C(K), being
full-dimensional, lies in this subfan and therefore must be of the form νC±J , giving the result.

We conclude with a proof of lemma 4.18. The connection to combinatorics comes by reducing to surfaces as in
[Wem18, §5.3], so we consider a general elephant SpecR ↪→ SpecR and the reduction functor F = (−) ⊗R R. It
is then known that FΛ is a contracted preprojective algebra with indecomposable projective modules naturally
indexed over ∆ \ J, thus giving an identification of Ksplit(projFΛ) ⊗ ℝ with Θ(∆ \ J) where the dual basis to
simple roots gives classes of indecomposable projectives. Here Iyama–Wemyss [IW] show that the silting fan of
FΛ coincides with the fan Arr+(∆, J) ∪Arr−(∆, J).

By [Gar23, proposition B] the reduction F is compatible with silting mutation and induces an isomorphism of silt-
ing fans via the induced isomorphism Ksplit(projΛ) ∼= Ksplit(projFΛ). Further this identification of Ksplit(projΛ)⊗ℝ
with Θ(∆ \ J) is compatible with that of KΛ with h(∆ \ J), so the silting fan of Λ is naturally identified with the
fan Arr+(∆, J) ∪Arr−(∆, J). We then have the following.

Proof of lemma 4.18. By lemmas 4.3 and 4.5 we have [ΨiSj] = [ΦiSj] for all j ∈ ∆ \ J, so both Φi and Ψi induce
the same map on K-theory which we momentarily call ψi : h(∆ \ νiJ)→ h(∆ \ J).

Now the functor Φi comes from a derived equivalence between Λ and νi
Λνi

, and the induced map

Ksplit(projνi
Λνi

)⊗ ℝ −→ Ksplit(projΛ)⊗ ℝ

is precisely (ψǐ )
−1. Further this map respects silting theory and gives a map of silting fans. In particular, the

image of C+
νiJ

under (ψǐ )
−1 is a cone in the intersection arrangement of Θ(∆ \ J).

By lemma 4.3 we have [ΦiSι(i)] = −[Si] and hence ψi(αι(i)) = −αi. Likewise if j 6= ι(i) then lemma 4.5
shows ψiαj = bijαi + αj for some non-negative integer bij recording the multiplicity of Nj in a minimal right
add(N/Ni)-approximation of Ni.

Thus image of C+
νiJ

in (ψǐ )
−1 intersects (and hence is equal to) the cone νiC+

J , and the images of primitive
integral generators are primitive integral. Evidently from (13) (φǐ )

−1 admits the same description, hence it
follows that ψi = φi as required.

§ 4.8 The poset of intermediate algebraic hearts. Continuing our analysis of torsion theories on H = flmodΛ,
theorem 4.20 shows that simply identifying J-paths gives us bijections between Cham(∆, J) and the posets
tilt+(H), tilt−(H), and therefore also MMN(R). We now show that these bijections induce isomorphisms of
Hasse quivers, whence proposition 4.17 shows the bijections give isomorphisms of posets.

WriteC for the composite bijectionMMN(R)→ tilt+(H)→ Cham(∆, J), i.e. the assignment C(νN) = νC+
J .

Lemma 4.22. The map C : MMN(R) → Cham(∆, J) is an anti-isomorphism of posets, i.e. we have M 6 M ′ in
MMN(R) if and only C(M) > C(M ′) in Cham(∆, J).

Proof. Following proposition 4.17, it suffices to check the behaviour of the map C on covering relations. Thus
supposeM <M ′ is a covering relation in MMN(R), in particular we must haveM ′ = νiM for some i ∈ ∆\𝕁(M).
Writing M = νN for some J-path ν, we need to show we have νC+

J > νiνC+
J i.e. νC+

J and C+
J lie on the same

side of the hyperplane spanned by νC+
J ∩ νiνC+

J .
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Now by theorem 4.6 the objectΨνSi lies in the heartsH,ΨνH, andΨνiνH[1]. Thus the heart cones C (ΨνH) = νC+
J

and C (ΨνiνH) = νiνC+
J lie on the opposite sides of the hyperplane which is orthogonal to the K-theory class

βi = [ΨνSi], and further σ lies on the same side of the hyperplane as C(H) = C+
J . Lastly, since νC+

J and νiνC+
J

intersect in a cone of codimension 1, the span of this wall must necessarily be the hyperplane {βi = 0}.

The following is now immediate.

Theorem 4.23. There are natural isomorphisms between the posets (MMN(R),6), (tilt+(H),6), (tilt−(H),6)op, and
(Cham(∆, I),6)op, given by identifying positive paths from the unique maximal element.

In particular, we deduce the important conclusion that all bounded intervals in MMN(R) (and therefore all
bounded intervals in tors±(H), torf±(H), tilt±(H)) are finite. This observation gives us the following.

Corollary 4.24 (Theorem 4.1 (2) and (3)). If U ∈ tors(H) is a torsion class satisfying Uν ⊆ U ⊆ Uν′ for J-paths
ν and ν ′, then we must have U = Uν′′ for some J-path ν ′′. Thus given torsion classes Uν ⊆ Uν′ , the interval of torsion
theories [Uν, Uν′ ] lies entirely in tors+(H) and is therefore finite.

The analogous statement holds for tors−(H).

Proof. Given Uν ⊆ U ⊆ Uν′ , consider the collection of torsion classes{
Uµ ∈ tors+(H) | Uµ ⊆ U

}
.

This is non-empty (since Uν ⊆ U) and finite (since Uµ ⊆ U implies µN lies in the finite interval [ν ′N,N] in
MMN(R)), so the set has some maximal element Uν′′ . We claim that U = Uν′′ in this case. Indeed if not, then
U ∩ Vν′′ is a non-zero torsion class in Ψν′′(H) whence it contains at least one simple object Ψν′′(Si) ∈ Ψν′′(H).
But this contradicts the maximality of Uν′′ , since we have

Uν′′ ⊆ Uν′′ ∗ 〈Ψν′′(Si)〉 = Uνiν′′ ⊆ U.

To obtain the analogous statement for tors−(H), we repeat the argument with the torsion-free classes Fν.

The saturation of alg-tilt(H) also allows us to rule out the possibility of non-algebraic hearts having non-zero
heart cones in Arr+(∆, J) ∪Arr−(∆, J).

Corollary 4.25. Let σ ∈ Arr(∆, J) be a cone not contained in the hyperplane {δJ = 0}. Then σ is the heart cone of some
K ∈ tilt(H) if and only if σ is full-dimensional and K is an algebraic tilt of H.

Proof. One implication is clear from theorem 4.20, so suppose σ in Arr(∆, J) \ Arr(∆, J) is the heart cone of
some heart in tilt(H). We may assume σ lies in Arr+(∆, J).

By corollary 4.24 it suffices to show Httσ and Httσ both lie in tilt+(H), so we consider the set

[Httσ,H
ttσ] ∩ alg-tilt(H) = {K ∈ alg-tilt(H) | σ ⊂ CK}.

Since the J-cone arrangement is locally finite away from the origin, this is a finite subset of tilt+(H). In particular
it has maximal and minimal elements Kσ, Kσ respectively.

If Httσ is not algebraic, then the inequality Kσ > Httσ is strict and by corollary 4.7, this relation is not covering.
Thus there is some heart K ′ ∈ tilt+(H) satisfying Kσ ⋗ K ′ > Httσ. But then K ′ evidently lies in [Httσ,H

ttσ], this
contradicts the minimality of Kσ. An analogous argument shows Httσ is algebraic as required.

This completes our discussion of the poset of functorially finite torsion theories in H.
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§ 5 Limits of Silting theory

Whilst the algebraic context emerging from Van den Bergh’s equivalence (4) allows us to completely classify
algebraic t-structures intermediate with respect to per

(
X
Z

)
(theorem 4.1), the existence of non-algebraic interme-

diate hearts is evident– for instance by observing that the heart cones of algebraic hearts do not fill out the
vector space Θ(∆\J), but perhaps more obviously by noting that cohX = CohX ∩ D0X is a non-Artinian category
that is the heart of a t-structure intermediate with respect to per

(
X
Z

)
.

This section studies the (necessarily non-algebraic) t-structures whose heart cone lies outside the Tits cones
Arr+(∆, J) ∪Arr−(∆, J), thus obtaining a complete description of the tilts of per

(
X
Z

)
which have non-zero heart

cones. In particular we show that every maximal cone in Arr(∆, J) is the heart cone of an intermediate t-
structure of geometric origin, thereby also showing that the heart fan HFan(per

(
X
Z

)
) must coincide with the

J-cone arrangement Arr(∆, J) (corollary 5.18).

Flops. The geometric t-structures naturally arise from birational modifications of X, where surgery operations
described below replace exceptional curves in a way that preserves the derived category.

Theorem 5.1 [Che02, theorem 1.1]. Suppose Y is a normal 3-fold with at worst terminal Gorenstein singularities, and
the maps τ : X → Y, τ ′ : W → Y are flopping contractions over Y such that whenever D is a τ-nef divisor on X, the
proper transform of −D across the birational map X 99K W is ℚ-cartier and τ ′-nef. Then there is a Fourier–Mukai type
equivalence of derived categories DbW → DbX.

A map τ ′ : W → Y satisfying the given properties, if it exists, is unique and is called the flop of τ : X → Y. We
say the equivalence DbW → DbX above is the Bridgeland–Chen flop functor.

Remark 5.2. There are various equivalent definitions of a flop in the literature, see for example [Kol90]. Given
a flopping contraction τ : X → Y between normal 3-folds, one typically needs to choose a ℚ-cartier ℚ-divisor
D on X such that −D is τ-ample in order to define the D-flop (i.e. the (KX +D)-flip) of τ, which is unique and
independent of the choice of D by [KM98, corollary 6.4]. In the special case that X (equivalently Y) is terminal,
the existence of the flop is proved in theorem 6.14 ibid.

Now the flopping contraction π : X → Z of interest to us is over a complete local base, and therefore [Sch01,
§2] guarantees that we can freely contract exceptional curves. That is to say, given any collection of exceptional
curves CI =

⋃
i∈I Ci ⊂ X, the map π admits a unique factorisation

(16) X Y Z
τ

π

ϖ

where τ contracts Ci to a point if and only if i ∈ I. We say τ is a partial contraction over Z. Since the singularity
on Z is assumed to be isolated, it follows that both τ and ϖ are flopping contractions.

In particular we can consider the flop τ ′ :W → Y of τ, and track the category cohW across the Bridgeland–Chen
flop functor to get a new t-structure on D0X. Further, the map ϖ ◦ τ ′ : W → Z is itself a flopping contraction
over Z so iteratively flopping exceptional curves gives new hearts on D0X.

The limiting hyperplane. In § 5.3 we show that each geometric heart constructed using iterated flops is
intermediate with respect to H = per

(
X
Z

)
, and is the supremum (in tilt(H)) of an appropriate collection of

algebraic hearts. This uses the interplay of flops and mutation-combinatorics (§§ 5.1 and 5.2) to naturally
identify the hyperplane {δJ = 0} ⊂ Θ(∆ \ J) with the cone of movable divisors on X. Thus the silting theory of
Λ is ‘completed’ by the birational geometry of X.

NowVan den Bergh’s construction of a tilting bundle𝒱
(
X
Y

)
on X [Van04] works in the generality of crepant partial

contractions as in (16), allowing Y to be enhanced with a sheaf of non-commutative algebras

𝒱

= τ∗ End𝒱
(
X
Y

)
such that the ‘non-commutative scheme’ (Y,

𝒱

) is derived equivalent to (X,𝒪X). Thus D0X has a heart per
(
X
Y

)
that is equivalent to the category of coherent

𝒱

-modules.
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In §5.4 we study the structure of per
(
X
Y

)
andmodifications thereof, using the combinatorics of flops andmutations

to enumerate them and characterise when these are intermediate with respect to per
(
X
Z

)
. In particular, we show in

§ 5.6 that per
(
X
Y

)
sits in tilt(H) as the supremum of all geometric hearts cohW corresponding to birational models

W that admit a partial contraction to Y, i.e. are obtained by iteratively flopping curves that get contracted by
the map τ : X→ Y.

The heart cone C(per
(
X
Y

)
) thus naturally is the intersection of the corresponding geometric heart cones. This

realises non-zero cones in Arr(∆, J) as precisely the heart cone of (semi-)geometric intermediate hearts (corol-
lary 5.29), thus concluding the analysis of all intermediate hearts with non-zero heart cones.

Combinatorics of flops (§§ 5.1 to 5.3)

§ 5.1 Flops and mutation. Wemyss’ homological minimal model programme [Wem18] addresses the question
of classifying birational models of X, i.e. varieties W obtained by iteratively flopping subsets of π-exceptional
curves. Abusing notation to write π :W → Z for the corresponding flopping contraction, we can again consider
the associated vector bundle𝒱

(
W
Z

)
, the modifying R-module generatorM = π∗𝒱

(
W
Z

)
, and the equivalence

VdB : Db(EndM) −−−−−−−→ DbW

constructed as in § 3. In this context, Wemyss shows that flops obey mutation-combinatorics following the
modifying generators.

Theorem 5.3 [Wem18]. If π : W → Z is a birational model of π : X → Z, then the associated modifying R-module
generators M = π∗𝒱

(
W
Z

)
and N = π∗𝒱

(
X
Z

)
lie in the same mutation class, and every module in MMGN(R) arises in

this way from a unique birational model of X.

Thus the set Bir
(
X
Z

)
of birational models of X is in bijection with MMGN(R) via the map W 7→ π∗𝒱

(
W
Z

)
. Since

MMGN(R) is a set with ∆-mutation, Bir
(
X
Z

)
inherits this structure via the above bijection so in particular for any

W ∈ Bir
(
X
Z

)
with associated modifying generator π∗𝒱

(
W
Z

)
=M we have 𝕁(W) = 𝕁(M), and for any 𝕁(W)-path ν

the birational model νW is the unique element of Bir
(
X
Z

)
satisfying π∗𝒱

(
νW
Z

)
= νM.

This mutation structure on Bir
(
X
Z

)
can be realised intrinsically as arising from flops– by theorem 3.9 the inde-

composable summands ofM are indexed over ∆ \ 𝕁(M) in a way that applying νi corresponds to mutating the
ith summand, and the only free summand is M0

∼= R. It follows that the non-free indecomposable summands
of 𝒱

(
W
Z

)
are indexed over ∆ \ 𝕁(W). By lemma 3.8 these summands are naturally in bijection with the integral

exceptional curves of W and exceptional curves is bijective.

Therefore we see that the reduced exceptional fiber of any birational model π : W → Z can be written as a
union of integral curves

⋃
i∈∆\𝕁(W) Ci, and the following result of Wemyss realises the operation νi on Bir

(
X
Z

)
as a flop of the ith curve.

Theorem 5.4 [Wem18, theorem 4.2]. Fix i ∈ ∆ \ J, and suppose νiX = W → Z is the birational model of X
corresponding to the modifying R-module generator M = νiN with reduced exceptional fiber

⋃
i∈∆\νiJ

Ci indexed as
above. Then W is precisely the flop of X in the curve Ci, and Cι(i) ⊂ W is the proper transform of Ci ⊂ X. Further, in
this case the Bridgeland–Chen flop functor DbW → DbX coincides with the composite equivalence

DbW
VdB−1

−−−−−−−−→ Db(EndM)
Ψi(−)=RHom(HomR(M,N),−)−−−−−−−−−−−−−−−−−−−−−−−−→ Db(EndN)

VdB−−−−−−→ DbX.

In what follows, we omit VdB from notation whenever convenient, thus for example writing Ψi for both the
mutation equivalence and the flop functor in the above theorem.

By examining the connectedness of ExQuivMMGN(R) we also conclude that any two birational models of X
are connected by a chain of single-curve flops, i.e. given W,W ′ ∈ Bir

(
X
Z

)
there is a 𝕁(W)-path ν = νin ...νi1 and

a sequence of flops
W 99K νi1W 99K νi2νi1W 99K ... 99K νin ...νi1W =W ′.
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Extending the notion of Bridgeland–Chen functors to chains of flops, in this case we say the flop functor associ-
ated to ν is the equivalence

DbνW
VdB−1

−−−−−−−−→ Db(EndνM)
Ψν(−)=RHom(HomR(νM,M),−)−−−−−−−−−−−−−−−−−−−−−−−−−→ Db(EndM)

VdB−−−−−−→ DbW

which is evidently independent of the choice of ν. If we choose the sequence of flops ν to be atomic (i.e. atomic as
a path in MMN(R)) then corollary 4.9 shows that the flop functor DbνW → DbW coincides with the composite
Ψν1
◦ ... ◦ Ψνn

(where we omit VdB from the notation). It can be seen (lemma 4.16) that atomic sequences of
flops are precisely those which have minimal length among all sequences of single-curve flops between the given
birational models, in particular any there is at least one atomic sequence of flops between any two birational
models.

§ 5.2 Flops and wall–crossing. Suppose W is a birational model of X with associated Dynkin data I = 𝕁(W).
Given the flopping contraction π : W → Z with reduced exceptional fiber

⋃
i∈∆\I Ci, it is well known [see

for example Van04, lemma 3.4.3] that the Picard group PicW is naturally dual to the group of π-relative 1-
cycles

Z1(W) =
⊕

i∈∆\I

ℤ · Ci

via the intersection pairing (ℒ · Ci) = deg(ℒ|Ci
). In particular it is a free Abelian group of rank |∆ \ I|, and if

𝒱
(
W
Z

)
has indecomposable summands (𝒩 ′i)i∈∆\I indexed as in lemma 3.8, then the line bundles ℒi = (det𝒩 ′i )̌

(i ∈ ∆ \I) form a basis of PicW dual to the standard basis of Z1(W). Write Pic+W for the submonoid of PicW
generated by the basis elements, this is the monoid of nef line bundles (i.e. line bundles which intersect every
exceptional curve non-negatively).

Now the birational map ρ :W 99K X is an isomorphism in codimension 1, and thus induces an isomorphism of
Picard groups ρ∗ : PicW → PicX given by taking proper transforms of divisors. This allows us to consider the
submonoid ρ∗ Pic+W ⊂ PicX of line bundles on X which are nef on W, and we now argue that considering all
such submonoids gives a decomposition

(17) PicX =
⋃

W∈Bir
(
X
Z

)ρ∗ Pic
+W

whose combinatorics are given by the wall–crossing rules of Iyama–Wemyss.

For this it is convenient to consider the space of ℝ-divisors Picℝ X = PicX⊗ ℝ. The nef cone Pic+ℝ W is then an
orthant generated by the basis vectors ℒi, and the isomorphisms of Picard groups given by proper transforms
extend linearly to give isomorphisms ρ∗ PicℝW → Picℝ X so that the nef cone ρ∗ Pic+ℝ W is a rational polyhedral
cone in Picℝ X. We then show the following.

Proposition 5.5. Given a flopping contraction π : X→ Z, the collection of rational polyhedral cones given by

Mov(X) =
⋃

W∈Bir
(
X
Z

)faces(ρ∗ Pic
+
ℝ W)

forms a complete simplicial fan in Picℝ X in which each nef cone ρ∗ Pic+ℝ W is full-dimensional.

Further, the natural linear isomorphism of Picℝ X with the hyperplane {θ ∈ Θ(∆\J) | θ(δJ) = 0} induces an isomorphism
of fansMov(X)→ Arr(∆, J) such that for each sequence of flops ν from X, the cone ρ∗ Pic+ℝ (νX) gets identified with the
chamber νC0

J.

Note the decomposition (17) can be immediately deduced by noting that each nef monoid is the set of integral
points in the corresponding nef cone.

In order to prove proposition 5.5, we first explain the construction of the natural map Picℝ X→ Θ(∆, J). Recall
that the vector spaceΘ(∆, J) is dual to the restricted root lattice h(∆\J), which we identify with the Grothendieck
group KΛ and hence (across the equivalence (4)) with KX. This identification is such that the sheaf 𝒪Ci

(−1)
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supported on the curve Ci (i ∈ ∆ \ J) has K-theory class given by the restricted root αi ∈ h(∆ \ J), while
the structure sheaf of the exceptional fiber has class −α0. The imaginary restricted root δJ, as we now show,
corresponds precisely to the class of a skyscraper sheaf.

Lemma 5.6. Let p ∈ X be a closed point on the exceptional fiber of π : X→ Z. Identifying KX with h(∆ \ J) as above,
any skyscraper sheaf 𝒪p ∈ cohX has K-theory class equal to δJ.

Proof. By [Kar17, theorem 5.2.4], the K-theory class of 𝒪p is determined by the indecomposable summands of
𝒩 as [𝒪p] =

∑
rk(𝒩i) · αi. By [IW, proposition 9.4], this vector is precisely the imaginary root δJ.

Now the objects in cohX have proper support of dimension 6 1, so for any ℒ ∈ PicX and ℱ ∈ cohX we have a
well-defined Snapper–Kleiman intersection number

(ℒ · ℱ) = χ(ℱ) − χ(ℒˇ⊗ ℱ).

By standard properties of the intersection product [see for example Kol96, §VI] this defines a ℤ-bilinear map
(− · −) : PicX ⊗ KX → ℤ. The intersection pairings across all birational models are compatible with various
identifications induced by flops.

Lemma 5.7. Given a birational model W = νX, the two intersection pairings

PicX⊗KX→ ℤ and PicW ⊗KW → ℤ

are compatible with the isomorphisms PicW ∼= PicX and KW ∼= KX, where the Picard groups are identified by taking
proper transforms across ρ :W 99K X, and the Grothendieck groups are identified via the flop equivalence.

Proof. It suffices to prove this for a single-curve flop W = νiX, i ∈ ∆ \ J.

Note both PicX and PicW are equipped with a preferred choice of basis– continuing to write 𝒩j (j ∈ ∆ \ J)
for the summands of 𝒩 = 𝒱

(
X
Z

)
, PicX is generated by the line bundles (det𝒩j)̌ = ℒj. Likewise writing 𝒩 ′j

(j ∈ ∆ \ νiJ) for the summands of 𝒩 ′ = 𝒱
(
W
Z

)
, we have the generators (det𝒩 ′j )̌ = ℒ ′j of PicW.

The Grothendieck groups too have preferred choices of bases in which the intersection product is readily
computed– for KW we choose the class of a skyscraper 𝒪p (p ∈W) and the classes of simple perverse sheaves
Sk = 𝒪Ck

(−1) (k ∈ ∆ \ νiJ), and likewise for KX.

To prove the result it thus suffices to show the equalities of intersection pairings

(ρ∗ℒ ′j, Ψi𝒪p) = (ℒ ′j,𝒪p) and (ρ∗ℒ ′j, ΨiSk) = (ℒ ′j, Sk) for all j, k ∈ ∆ \ νiJ.

The first equality clearly holds since both intersections are zero (the object Ψi𝒪p has the same class as a
skyscraper sheaf on X). The latter equalities, on the other hand, can be shown explicitly by expressing ρ∗ℒ ′j
and ΨiSk in terms of the standard bases of PicX and KX respectively and computing both sides of the expression.
We explain how to do this.

To compute the proper transform of ℒ ′j, we first note that the birational maps π : X → Z, π : W → Z, and
ρ :W 99K X are all isomorphisms away from a codimension two locus and hence induce equivalences between
categories of reflexive sheaves. Thus we can compare line bundles on the two varieties by taking pushforwards
to Z, where theorem 5.4 shows π∗𝒱

(
X
Z

)
= νι(i)(π∗𝒱

(
X
Z

)
). Thus for j ∈ ∆ \ (J + i) we have

π∗𝒩 ′j = π∗𝒩j = Nj, so that ρ∗ℒ ′j = ℒj.

On the other hand, π∗𝒩i = Ni is the kernel of a minimal right add(νiN/Nι(i)) approximation f of π∗𝒩 ′ι(i) = Nι(i).
Further, νiN/Nι(i) contains N0 = R as a summand, whence the approximation f is surjective i.e. we have an
exact sequence

(18) 0→ Ni
g−−−−→

⊕
j∈∆\(J+i)

N
⊕bj

j

f−−−−→ Nι(i) → 0
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for some tuple of non-negative integers (bj). Considering determinants gives

detNι(i) =
⊗

j∈∆\(J+i)

(detNj)
⊗bj ⊗ (detNi)̌ , so that ρ∗ℒ ′ι(i) =

⊗
j∈∆\(J+i)

ℒ⊗bj

j ⊗ ℒǐ .

Thus we have computed the proper transforms of all generators of PicW. Moreover, [IW14, proposition 6.4 (1)]
shows the map g in the exchange sequence eq. (18) is a minimal add(N/Ni)-approximation of Ni. This allows
us to use lemmas 4.3 and 4.5 and compute the classes [ΨiSk] ∈ KX as

[ΨiSι(i)] = −[Si], [ΨiSk] = [Sk] + bk[Si] (k ∈ ∆ \ (J + i)).

The equalities (ρ∗ℒ ′j, ΨiSk) = (ℒ ′j, Sk) are then straightforward to verify.

The intersection product PicX ⊗KX → ℝ naturally gives a linear map Picℝ X → Hom(KX,ℝ) ∼= Θ(∆ \ J). By
showing this map is an isomorphism onto the hyperplane {δJ = 0} and tracking various nef cones across it, we
can now prove the proposition.

Proof of proposition 5.5. The intersection of any line bundle with a sheaf that has zero-dimensional support is
trivial, thus considering ℱ = 𝒪p (the skyscraper sheaf at a closed point) and using lemma 5.6 shows that the
map Picℝ X → Θ(∆ \ J) constructed above has image in {δJ = 0}. On the other hand considering the sheaves
ℱ = 𝒪Ci

(−1) shows the map is injective, and hence an isomorphism onto the hyperplane {δJ = 0} by comparing
dimensions.

Now the nef cone Pic+ℝ X is spanned by divisors which pair with each αi = [𝒪Ci
(−1)] non-negatively, and hence

gets identified with C0
J by the above injection. If W = νX is another birational model, its nef cone likewise gets

identified with the chamber C0
νJ ⊂ Θ(∆, νJ). By lemma 5.7 these identifications are compatible with flops and

mutation, i.e. there is a commutative square

PicℝW Picℝ X

Θ(∆ \ νJ) Θ(∆ \ J).

ρ∗

φν̌

Thus the nef cone ρ∗ Pic+ℝ W in Picℝ X gets mapped to the cone (φν̌ )−1C0
νJ = νC0

J in Θ(∆, J), in particular
each nef cone is full dimensional and all maximal cones in Mov(X) arise as nef cones. It follows that there is
an isomorphism of fans Mov(X)→ Arr(∆, J) of the required form, and the remaining properties (completeness,
simpliciality) of Mov(X) can be deduced from the corresponding properties of Arr(∆, J).

We now examine geometric consequences. The completeness of the fan Mov(X) implies that any line bundle
ℒ ∈ PicX, after some appropriate sequence of flops, becomes nef and hence globally generated [see for example
Van04, lemma 3.4.5]. In particular the base locus of the linear system associated to ℒ is contained entirely within
the exceptional curves in X, which has co-dimension 2. Recalling that an ℝ-divisor is movable if and only if it is
a non-negative linear combinations of such line bundles, we have the following.

Corollary 5.8. If π : X→ Z is a flopping contraction, every divisor on X is movable.

This explains the notation Mov(X) for the fan, since its support can be identified with the cone of movable
divisors on X. When X is a minimal model of Z, work of Kawamata [Kaw88], Kollár [Kol89], Mori [Mor82],
and Reid [Rei] shows that the (closure of the) cone of movable divisors can be decomposed into a union of nef
cones of minimal models in a way that that the nef cones of non-isomorphic models have disjoint interiors [the
result is summarised in Mat02, theorem 12.2.7]. Via mutation combinatorics of birational models, modifying
generators, and chambers in the intersection arrangement, this decomposition theorem generalises to arbitrary
flopping contractions over isolated cDV singularities.
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Corollary 5.9. Given a flopping contraction π : X → Z, the nef cones ρ∗ Pic+ℝ W for W ∈ Bir
(
X
Z

)
cover the cone of

movable divisors and their interiors (i.e. the corresponding ample cones) are pairwise disjoint.

Proof. The only claim that is unproven so far is that non-isomorphic birational models have disjoint ample cones,
equivalently (since Mov(X) is a fan) that non-isomorphic birational models cannot have the same nef cones.
But if νX and ν ′X have the same nef cone, the correspondence of proposition 5.5 shows we have νC0

J = ν ′C0
J

in Cham(∆, J). By the general affine Auslander–McKay correspondence [IW, theorem 0.18], the assignment
νC0

J 7→ νN is a bijection Cham(∆, J) → MMGNR and thus we have an equality of modifying generators
νN = ν ′N. But by theorem 5.3, this is not possible unless νX ∼= ν ′X as required.

In particular, the assignment to nef cones gives an isomorphism Bir
(
X
Z

)
→ Cham(∆, J) of sets with ∆-mutation.

Karmazyn [Kar17, §5.2] and Wemyss [Wem18, §5] use geometric invariant theory to provide a natural interpre-
tation of the inverse map, which we briefly outline next.

By [Wem18, theorem 2.15] the category Per
(
X
Z

)
∼= modΛ can be identified with a subcategory of representations

of a quiver with vertices ∆ \ J. Viewing elements of h(∆ \ J) =
⊕

i∈∆\J ℤ · αi as dimension vectors for this
quiver, the identification is such that the dimension vector of the representation corresponding to x ∈ per

(
X
Z

)
is

precisely its K-theory class.

Under the above identifications, elements of the dual vector space Θ(∆ \ J) naturally give stability parameters
(in the sense of [Kin94]) on Per

(
X
Z

)
and thus for any stability parameter θ ∈ {δJ = 0} we can construct the

coarse moduli space M(θ, δJ) of θ-semistable perverse sheaves with dimension vector δJ. When θ is generic in a
chamber νC0

J, there are no strictly semistable objects and it is shown that there is an isomorphismM(θ, δJ) ∼= νX

in a way that the closed point p ∈ νX corresponds to the ‘perverse point sheaf’ Ψν𝒪p ∈ Per
(
X
Z

)
. This moduli

construction defines the inverse map Cham(∆, J)→ Bir
(
X
Z

)
.

The upshot for us is that this gives excellent control over the subcategories of semistable objects in per
(
X
Z

)
.

Proposition 5.10. For a chamber νC0
J ∈ Cham(∆, J) and a generic vector θ ∈ νC0

J, an object of H = per
(
X
Z

)
is θ-stable

if and only if it is equal to a perverse point sheaf Ψν𝒪p for some closed point p on the exceptional fiber of π : νX→ Z. In
particular, subcategory of semistable objects associated to νC0

J is given by the extension closure of such objects, i.e.

Hss
(
νC0

J

)
=

〈
Ψν𝒪p | p ∈ π−1[m] ⊂ νX

〉
.

Proof. By [Wem18, theorem 5.12], the flop functor Ψν : Db(νX)→ DbX restricts to an equivalence of categories{
x ∈ Per

(
νX
Z

)
| x is φν̌ θ-semistable

}
−→

{
x ∈ Per

(
X
Z

)
| x is θ-semistable

}
and therefore an object of per

(
X
Z

)
is θ-semistable if and only if it is of the form Ψν(x) for some φν̌ θ-semistable

object x ∈ per
(
νX
Z

)
. Thus it suffices to show that for a generic θ ∈ C0

J, the θ-stable objects in per
(
X
Z

)
are precisely

all the skyscraper sheaves on the exceptional fiber. Given this, the description of Hss
(
νC0

J

)
follows by recalling

that any semistable object admits a finite filtration by stable ones.

Now if an object is θ-stable, it remains so upon small perturbations of θ within the hyperplane {δJ = 0} and
thus it must have dimension vector nδJ for some integer n > 0. The objects with n = 1 can be read off from the
closed points in Karmazyn’s moduli space M(θ, δJ) ∼= X, thus the collection of θ-stable objects in per

(
X
Z

)
that

have K-theory class δJ is precisely {
𝒪p | p ∈ π−1[m] ⊂ X

}
.

We show the case n > 2 does not occur, by replicating the argument of [Gar22, lemma 4.12]. Indeed suppose
for the sake of contradiction that x ∈ per

(
X
Z

)
is θ-stable and [x] = nδJ for n > 2. Since any skyscraper sheaf

𝒪p ∈ Per
(
X
Z

)
is θ-stable and necessarily distinct from x, we have Hom(x,𝒪p) = 0 for all p ∈ X. Combining this

with the fact that x is a two-term complex of coherent sheaves, we see that the sheaf H0
cohX(x) has empty support

and hence x[−1] is a sheaf on X. Choosing a sufficiently ample bundle ℒ on X then gives us χ(ℒ ⊗ x[−1]) > 0,
but this is absurd since x is numerically equivalent to some skyscraper sheaf 𝒪⊕np .
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§ 5.3 Classic, mixed, and reversed geometric hearts. We use the geometries of flops to construct a plethora
of t-structures on D0X. For instance, the natural heart CohW ⊂ DbW restricts to give a Noetherian t-structure
cohW ⊂ D0W, which is the full subcategory of coherent sheaves supported on the exceptional fiber of π :W → Z.
Now as in [BPPW24, example 2.6] we can consider the torsion class of sheaves with zero-dimensional support,
giving a torsion pair

cohX = 〈𝒪p | p ∈ π−1[m]〉 ∗ coh◦ X

where coh◦ X is the corresponding torsion-free class of pure sheaves with one dimensional support in π−1[m].
The corresponding tilt is an Artinian category which we call the reversed geometric heart, given by

cohX = coh◦ X ∗ 〈𝒪p[−1] | p ∈ π−1[m]〉.

Evidently, we have cohX < cohX in t-str(D0X). Further since the torsion class is generated by simple objects, we
can immediately deduce the following description of the interval [cohX, cohX].

Lemma 5.11. Let K ∈ t-str(D0X) be the heart of a t-structure satisfying cohX 6 K 6 cohX. Then there is a subset of the
exceptional fiber Q ⊆ π−1[m] such that K is the tilt of cohX in the torsion class of sheaves with zero-dimensional support
in Q, i.e.

(19) K = 〈𝒪p | p ∈ π−1[m] \Q〉 ∗ coh◦ X ∗ 〈𝒪p[−1] | p ∈ Q〉.

Further every heart in the interval [cohX, cohX] ⊂ t-str(D0X) arises in this way, giving an isomorphism of posets between
the said interval and the boolean lattice on the closed points of π−1[m].

Thus we have described geometric hearts of three flavours– classic (cohX), reversed (cohX), and mixed (i.e.
everything in between). Given any other birational model W = νX, we can likewise construct the interval
[cohW, cohW] ⊂ D0W and track it across the flop functor Ψν to obtain an interval of geometric t-structures

Ψν[cohW, cohW] =
{
ΨνK | cohW 6 K 6 cohW in t-str(D0W)

}
⊂ t-str(D0X).

Remark 5.12. Geometric hearts and their associated torsion theories furnish a rich bank of examples when
studying chain conditions on Abelian categories and wide generation of torsion theories. In particular, the
table in § 2.3 is constructed using the following observations.

(When does a geometric heart arise from semibricks?) Suppose the torsion pair H = T ∗ F is such that the tilt
K = F ∗ T [−1] lies in [cohX, cohX], and is associated to Q ⊆ π−1[m] as in lemma 5.11. Evidently each 𝒪p

(p ∈ π−1[m] \Q) and each 𝒪p[−1] (p ∈ Q) is simple in K. Considering the decomposition (19) shows that
any simple object of K must be of this form; in particular a sheaf k ∈ coh◦ X cannot be simple in K since
the sets Hom(𝒪p[−1], k) and Hom(k,𝒪p) are both non-zero for any closed point p ∈ Supp(k).

By a similar reasoning, we see that every non-zero object in K has a simple sub-object (i.e. T is widely
generated, see proposition 2.6) if and only if Q contains at least one point in each exceptional curve
Ci ⊂ X. Likewise, non-zero object in K has a simple quotient (i.e. F is widely generated) if and only if the
complement π−1[m] \Q contains at least one point in every exceptional curve Ci ⊂ X.

(What chain conditions do geometric hearts satisfy?) It is a classical fact that cohX is a Noetherian category.
On the other hand, any geometric heart K ∈ [cohX, cohX) is necessarily non-Noetherian, since K then
contains some 𝒪p[−1] (p ∈ Ci ⊂ X) and hence the sequence of morphisms 𝒪Ci

→ 𝒪Ci
(1)→ 𝒪Ci

(2)→ ...

(each of which has cone 𝒪p ∈ K[1]) gives an infinite chain of proper surjections in K.

Dually, the heart cohX is the only Artinian heart in the interval [cohX, cohX]. Indeed if a morphism x→ y is
injective in cohX with non-zero cokernel y/x, then considering cohomologies with respect to cohX produces
a long exact sequence

0→ H0(x)→ H0(y)→ H0(y/x)︸ ︷︷ ︸
pure sheaves with one-dimensional support

−→ H1(x)→ H1(y)→ H1(y/x)︸ ︷︷ ︸
sheaves with zero-dimensional support

→ 0
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in cohX. In particular, either H0x has lower rank than H0y on some exceptional curve Ci ⊂ X, or y/x has
zero-dimensional support (i.e. H0(y/x) = 0 and the length of H1x is lower than that of H1y. Thus cohX

has no infinite descending chains of inclusions ... ↪→ x2 ↪→ x1 ↪→ x.

Intermediacy of geometric hearts. We now analyse geometric hearts on different birational modelsW ∈ Bir
(
X
Z

)
in relation to the reference heart H = per

(
X
Z

)
in D0X, and prove the following.

Theorem 5.13. For ν a sequence of flops from X and W = νX the corresponding birational model, the translate of any
t-structure in [cohW, cohW] across the flop functor Ψν is intermediate with respect to H. Moreover the t-structures Ψν cohW

and Ψν cohW are determined numerically as

Ψν cohW = Htt
(
νC0

J

)
, Ψν cohW = Htt (νC0

J

)
,

and thus an intermediate heart K ∈ tilt(H) has heart cone CK = νC0
J if and only if it lies in Ψν[cohW, cohW].

Combining this with lemma 5.11 immediately yields the following.

Corollary 5.14. For any spherical J-path ν and chamber σ = νC0
J, the interval [Httσ,H

ttσ] in tilt(H) is isomorphic to
the boolean lattice of closed points on the (reduced) exceptional fiber C of π : νX→ Z. Further, the brick labels arising in
this interval are precisely the perverse point sheaves Ψν𝒪p for p ∈ C.

We now prove theorem 5.13. When the sequence of flops ν is trivial, this is straightforward.

Proof of theorem 5.13 when W = X. Recall that the tilting bundle 𝒱
(
X
Z

)
allows for the description (5) of Per

(
X
Z

)
as

a subcategory of CohX[0, 1]. Accordingly in D0X we have cohX ⊂ per
(
X
Z

)
[−1, 0], i.e. cohX lies in tilt(H).

Now considering the collection of objects {𝒪Ci
(n) | i ∈ ∆ \ J, n ∈ ℤ} shows that the heart cone C(cohX) must

be contained in the cone C0
J. Thus it follows from the discussion in § 5.2 that every functional in C(cohX) can

be expressed on classes of sheaves as
[ℱ] 7→

∑
i∈∆\J

ai(ℒi · ℱ)

for some tuple of real numbers ai > 0. But conversely every such tuple yields a functional that is non-negative
on objects in cohX, i.e. we have C(cohX) = C0

J.

Picking a generic θ ∈ C0
J, it follows from lemma 2.13 that cohX is the tilt of the numerically defined category

Htt(θ) in the torsion classU = cohX[1]∩Hss(θ). But every θ-semistable object is an extension of skyscraper sheaves
(proposition 5.10), so we must have in fact have U = 0 i.e. Htt(θ) = cohX, and consequently Htt(θ) = cohX as
claimed.

When a non-trivial sequence of flops ν is involved, the intermediacy of Ψν cohW with respect to H = per
(
X
Z

)
is

not immediate from constructions. The idea, rather, is to consider the interval
(
cohW, per

(
W
Z

)]
⊂ t-str(D0W)

and show that its track under the flop functor lies entirely in tilt(H). Since tilt(H) is a complete lattice, it then
follows that

Ψν(cohW) = inf Ψν

(
cohW, per

(
W
Z

)]
∈ tilt(H).

Given the intermediacy of Ψν cohW, the statements about the numerical tilts Htt(νC0
J), H

tt(νC0
J) follow by ex-

amining the semistable objects in Hss(νC0
J) just as in the W = X case.

Thus we examine the interval
(
cohX, per

(
X
Z

)]
, showing that it can in fact be defined K-theoretically.

Lemma 5.15. Given an algebraic heart K ∈ t-stralg(D0X), the following are equivalent.

(1) We have cohX 6 K 6 per
(
X
Z

)
in the partial order on t-structures.

(2) The heart K contains the collection of objects 𝒮 = {𝒪Ci
(−1) | i ∈ ∆ \ J} ∪ {𝒪p | p a closed point of π−1[m]}.
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(3) The heart cone CK ⊂ Θ(∆ \ J) lies in the region {δJ > 0} ∩
⋂

i∈∆\J

{αi > 0}.

Proof. The implications (1)⇒(2)⇒(3) are immediate by noting that any heart K satisfying cohX 6 K 6 per
(
X
Z

)
must contain the subcategory cohX ∩ per

(
X
Z

)
⊃ 𝒮, and in this case every θ ∈ CK must be non-negative on the

classes of objects in 𝒮 (we note that θ(δJ) is non-zero whenever θ is in the heart cone of an algebraic heart).

Now if K is an algebraic heart satisfying (3), then CK is non-zero and a generic parameter θ ∈ CK can be
written as θ = θ0 + t · δ∗J for some θ0 ∈ C0

J, a real number t > 0, and the vector δ∗J ∈ Θ(∆ \ J) defined by

(20) δ∗J(δJ) = 1, δ∗J(αi) = 0 for all i ∈ ∆ \ J.

Note that δ∗J(α0) = 1 so that δ∗J[h] > 0 for all h ∈ H. It follows that we have

K[1] ∩H = Htr(θ) = {h ∈ H | θ[h ′] < 0 for all non-zero factors h� h ′ 6= 0}
= {h ∈ H | θ0[h ′] < −t · δ∗J[h ′] for all non-zero factors h� h ′ 6= 0}
⊆ {h ∈ H | θ0[h ′] < 0 for all non-zero factors h� h ′ 6= 0}
= Htr(θ

0) = Htt(θ0)[1] ∩H.

But we have shown that Htt(θ0) coincides with cohX, thus there is a containment K[1] ∩ H ⊆ cohX[1] ∩ H which
gives the relation (1) on the corresponding tilts.

Write [cohX,H]alg for the set of algebraic t-structures K satisfying cohX 6 K 6 H, this is equal to [cohX,H]∩tilt+(H).
We now argue that this poset captures all necessary information required to track geometric hearts under
mutations.

Lemma 5.16. Algebraic hearts are dense in the interval [cohX,H], i.e. every heart K satisfying cohX 6 K 6 H is the
infimimum (in the complete lattice tilt(H)) of a subset of [cohX,H]alg.

Proof. First observe that it suffices to prove that cohX is the infimum of [cohX,H]alg. Indeed if cohX 6 K 6 H is
any other heart, then we can consider the poset{

inf{K,K ′} | K ′ ∈ [cohX,H]alg
}

which has infimum inf{K, cohX} = K, and further is contained in [cohX,H]alg since every heart inf{K,K ′} is con-
tained in the interval [K ′, H] ⊂ tilt+(H) and is therefore algebraic by theorem 4.1 (2).

Thus we show that cohX = inf[cohX,H]alg, or equivalently that we have the equality of torsion free classes

cohX ∩H =
⋂

K∈[cohX,H]alg

K ∩H.

The containment ⊆ is obvious, so we suppose we have an object h that lies in K ∩ H for every K ∈ [cohX,H]alg
and show that we must have h ∈ cohX ∩H. Fix a generic θ0 ∈ C0

J so that cohX ∩H = Htf(θ0), and consider the
parameter θ = θ0 + t · δ∗J for t > 0. By lemma 5.15 θ lies in the heart cone CK for some K ∈ [cohX,H]alg, so we
have h ∈ K ∩H = Htf(θ), and hence θ[h ′] > 0 for all sub-objects h ′ ↪→ h. Now we must have 0 6 δ∗J[h ′] 6 δ∗J[h]
whenever h ′ is a sub-object of h, so it follows that θ0[h ′] > −t ·δ∗J[h] for all h ′ ↪→ h. But since t > 0 was arbitrary
we deduce θ0[h ′] > 0 for all such h ′, i.e. h ∈ Htf(θ0) as required.

The above results apply to any birational modelW = νX, in particular algebraic hearts are dense in the interval[
cohW, per

(
W
Z

)]
and an algebraic heart K ∈ t-stralg(D0W) satisfies cohW 6 K 6 per

(
W
Z

)
if and only if its heart

cone lies in the region

(21) {δνJ > 0} ∩
⋂

i∈∆\νJ

{αi > 0} ⊂ Θ(∆ \ νJ).

In particular, under the equivalence VdB we see that there is an atomic νJ-path ν ′ such that CK = ν ′C0
νJ lies

in the region (21) and K = Ψν′(flmod(ν′νΛν′ν)).
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Lemma 5.17. For K as above, we have ΨνK = Ψν′ν(flmod(ν′νΛν′ν)) and in particular the translate of K under the
flop functor Ψν is intermediate with respect to per

(
X
Z

)
∼= flmodΛ.

Proof. We may assume without loss of generality that the sequence of flops ν is atomic, so by corollary 4.9 it
suffices to prove that the path ν ′ν is atomic too. We show it is reduced and conclude using lemma 4.16.

Now any hyperplane crossed by ν must pass through the cone C0
J ∩ νC0

J, and in particular the ray⋂
i∈∆\νJ

{φναi = 0}.

But any two chambers in the region (21), after applying (φν̌ )
−1, must lie on the same side of such a hyperplane.

In particular, such a hyperplane cannot be crossed by the reduced path ν ′ from νC+
J to ν ′νC+

J , and thus the
composition ν ′ν is reduced.

This allows us to conclude the analysis of geometric hearts, by tracking the sub-poset [cohW, per
(
W
Z

)
]alg of

algebraic hearts in
[
cohW, per

(
W
Z

)]
.

Proof of theorem 5.13. IfW = νX is a birational model, then for every K ∈ [cohW, per
(
W
Z

)
]alg we have ΨνK ∈ tilt(H)

where H = per
(
X
Z

)
. It follows that the heart

Ψν cohW = Ψν inf
{
K | K ∈

[
cohW, per

(
W
Z

)]
alg

}
= inf

{
ΨνK | K ∈

[
cohW, per

(
W
Z

)]
alg

}
lies in tilt(H) too. Just as in the W = X case, examining the objects Ψν𝒪Ci

(n) for i ∈ ∆ \ νJ and n ∈ ℤ shows
C(Ψν cohW) ⊆ νC0

J, and realising the functionals as intersections with nef line bundles shows equality holds.
Lastly, noting that ΨνC0

J contains Hss
(
νC0

J

)
= 〈Ψν𝒪p | p ∈ π−1[m] ⊂ W〉 shows that it is maximal with this

heart cone, consequently Ψν cohW is minimal.

The complete heart fan. An important consequence of theorem 5.13 is that we can now realise every chamber
νC0

J ⊂ Θ(∆, J) as the heart cone of a t-structure in H[−1, 0], and thus every maximal cone in the J-cone
arrangement Arr(∆, J) appears in the heart fan HFan(H). Since a fan is determined by the data of its maximal
cones, we have the following.

Corollary 5.18. Under the identification Hom(KX,ℝ) ∼= Θ(∆ \ J), the heart fan of H = per
(
X
Z

)
is given by the J-cone

arrangement Arr(∆, J).

Perversity arises where geometries meet (§§ 5.4 to 5.6)

§ 5.4 Perverse sheaves on partial contractions. When the flopping contraction π : X → Z is not irre-
ducible (i.e. the reduced exceptional fiber has multiple components), there are intermediate partial contractions
X→ Y → Z to be considered. In this subsection we establish basic structural results about perverse sheaves aris-
ing from such morphisms, following which we study semi-geometric structures in relation to the the reference
heart per

(
X
Z

)
⊂ D0X.

Thus fix a subset I ⊂ ∆ \ J, equivalently a subset of reduced exceptional curves CI =
⋃

i∈I Ci in X which
can be contracted via the map τ : X → Y as in (16). As noted previously, τ is a flopping contraction and in
particular [Van04, theorem A] applies. Thus there is a vector bundle𝒱

(
X
Y

)
on X, furnishing a sheaf of 𝒪Y -algebras𝒱

= τ∗ End𝒱
(
X
Y

)
such that there is a derived equivalence

(22) VdB : Db 𝒱 τ−1(−) ⊗L 𝒱
(
X
Y

)
−−−−−−−−−−−−−−→ DbX
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where the tensor product is over τ−1 𝒱

. We write Per
(
X
Y

)
for the image of the natural heart Coh

𝒱

under this
equivalence. By [Van04, proposition 3.3.1], this category admits the description

(23) Per
(
X
Y

)
=

{
x ∈ CohX [0, 1]

∣∣∣∣∣ R1τ∗(H0x) = 0, τ∗(H−1x) = 0,

Hom(c,H−1x) = 0 whenever c ∈ CohX satisfies Rτ∗c = 0

}
.

Since we are concerned with complexes supported on π−1[m], we also define the full subcategories

D0 𝒱

=
{
y ∈ Db 𝒱

| Suppy ⊆ ϖ−1[m]
}
,

coh

𝒱

= Coh

𝒱∩ D0 𝒱

, per
(
X
Y

)
= Per

(
X
Y

)
∩ D0X.

The functor VdB clearly restricts to an equivalence D0 𝒱→ D0X, thus identifying coh

𝒱

with per
(
X
Y

)
. The trun-

cation functors associated to the heart Coh

𝒱⊂ Db 𝒱

evidently restrict to D0 𝒱

, showing that coh

𝒱⊂ D0 𝒱

(and
hence per

(
X
Y

)
⊂ D0X) is the heart of a bounded t-structure.

Remark 5.19. The following calibration is helpful– when I = ∅ the map τ is an isomorphism and we have
𝒱
(
X
Y

)
=

𝒱

= 𝒪X, so that Per
(
X
Y

)
= Coh

𝒱

= CohX. In this case we have D0 𝒱

= D0X by definition. On the other
extreme, when I = ∆ \ J the map ϖ is an isomorphism and the sheaf

𝒱

on Y = SpecR corresponds to the
R-algebra Λ as in § 3. Since (R,m) is complete local, a complex of R-modules has support in [m] if and only if
its total cohomology has finite length, i.e. D0 𝒱

= DflΛ.

Characterising perversity. We now show that the ‘algebraic part’ of per
(
X
Y

)
⊂ D0X is generated by finitely

many simple perverse sheaves which depend only on a neighbourhood of the contracted curves, and further can
be read off as a subcategory of per

(
X
Z

)
. For simplicity we first consider the case when CI ⊂ X is connected, i.e.

τ is an isomorphism away from a point p = τ(CI) ∈ Y. Write CI = τ
−1(p) for the scheme theoretic exceptional

fiber of τ, this has underlying reduced subscheme CI. Then we have the following.

Proposition 5.20. Let CI ⊂ X be a connected component of the reduced exceptional fiber in X, and τ : X→ Y the crepant
contraction of CI. For any complex of coherent sheaves x ∈ D0X supported within CI, the following are equivalent.

(1) The complex x lies in per
(
X
Z

)
, i.e. x is perverse with respect to the contraction π : X→ Z.

(2) The complex x lies in per
(
X
Y

)
, i.e. x is perverse with respect to the contraction τ : X→ Y.

(3) The complex x is filtered by the sheaves 𝒪Ci
(−1) for i ∈ I and the complex ωCI

[1] (the suspended canonical sheaf
of scheme-theoretic exceptional fiber of τ).

To prove this, we first establish the following lemma which reduces conditions involving the null-category
{c ∈ CohX | Rτ∗c = 0} (such as those appearing in the descriptions (5), (23)) to checks on a finite collection of
objects.

Lemma 5.21. Let τ : X → Y be the crepant contraction of CI and c ∈ CohX be such that Rτ∗c = 0. Then c is filtered
by the sheaves 𝒪Ci

(−1) for i ∈ I.

Proof. Note if c is as given, then we have Rπ∗c = 0 and hence c ∈ Per
(
X
Z

)
from the description (5). Further c is

supported within π−1[m]. Thus across the equivalence (4), we see that c thus corresponds to some finite length
Λ-module (which we again denote by c). In particular c is filtered by the simples of H = per

(
X
Z

)
and the problem

is reduced to showing that the only simples which can occur in a composition series for c are the Si for i ∈ I.

But by [Wem18, theorem 2.15], Λ can be expressed as the quotient of the path algebra of a quiver with vertex
set ∆\J, and the simple representation supported on vertex i is precisely the module Si. Further writing ei ∈ Λ
for the vertex idempotent at i ∈ ∆ \ J, [Wem18, proposition 2.14] shows that a Λ-module x is annihilated by∑

i/∈I ei if and only if the corresponding complex x ∈ Per
(
X
Z

)
satisfies Rτ∗x = 0. In particular, the Λ-module c

is annihilated by
∑

i/∈I ei, and hence is filtered only by the vertex simples Si for i ∈ I as required.
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We then have the following.

Proof of proposition 5.20, (1)⇐⇒ (2). Let x be a complex of coherent sheaves with support in CI. Since the objects
of both per

(
X
Y

)
and per

(
X
Z

)
can be described as two-term complexes of coherent sheaves on X, we can assume x

lies in cohX[0, 1] and for brevity write H−i
cohX(x) = xi for its cohomology sheaves.

If x ∈ per
(
X
Y

)
, then by the description (23) we see that τ∗(x1) = 0 and hence π∗(x1) = 0.

Likewise we have Hom(𝒪Cj
(−1), x1) = 0 whenever Cj is contracted by τ, because Rτ∗𝒪Cj

(−1) = 0. On the other
hand if Cj is not contracted by τ and we have a non-zero morphism f : 𝒪Cj

(−1)→ x1, then the image im f is a
non-zero subsheaf of x1 supported within the finite collection of points Cj ∩ (

⋃
i∈I Ci). But in that case, π∗(im f)

is a non-zero subsheaf of π∗(x1) = 0, a contradiction. Thus in fact Hom(𝒪Cj
(−1), x1) = 0 for all exceptional

curves Cj, and hence by lemma 5.21 we have Hom(c, x1) = 0 whenever c ∈ CohX satisfies Rπ∗c = 0.

Lastly, examining the Leray spectral sequence

Rpϖ∗ ◦Rqτ∗(x0)⇒ Rp+qπ∗(x0)

(which degenerates since all maps have fiber dimension 6 1) shows that R1π∗(x0) is filtered by ϖ∗ ◦R1τ∗(x0)

(= 0 since R1τ∗(x0) vanishes) and R1ϖ∗ ◦ τ∗(x0) (= 0 since τ∗(x0) is supported on a zero-dimensional subset
of Y). Thus we have R1π∗(x0) = 0 as well, and hence x ∈ per

(
X
Z

)
.

Conversely if x ∈ per
(
X
Z

)
, we see that τ∗(x1) is a coherent sheaf on Y with zero-dimensional support (contained

in the image of contracted curves) such that ϖ∗ ◦ τ∗(x1) = π∗(x1) = 0. This is possible only if τ∗(x1) = 0.
Likewise since R1π∗(x0) = 0, the Leray sequence shows we have ϖ∗ ◦ R1τ∗(x0) = 0 and hence R1τ∗(x0) = 0.
Lastly if c ∈ CohX is such that Rτ∗c = 0 then we have Rπ∗c = Rϖ∗ ◦Rτ∗c = 0, and hence Hom(c, x1) = 0. This
shows x ∈ per

(
X
Y

)
as required.

The equivalence (2) ⇐⇒ (3) is a consequence of [Van04, proposition 3.1.4], which states that membership for
per

(
X
Y

)
can be checked locally on Y. This allows us to reduce the problem to a formal neighbourhood ZI ↪→ Y

of p, i.e. the spectrum of the complete local ring �̂�Y,p. The scheme ZI has an isolated cDV singularity at its
closed point, and the restriction of τ is a flopping contraction XI → ZI with reduced exceptional fiber CI ⊂ XI.
We can therefore consider the full subcategory D0XI ⊂ DbXI of complexes supported on CI.

Lemma 5.22. The restriction (i.e. pullback) functor D0X → D0XI gives an equivalence of the category D0XI with the
full subcategory of complexes in D0X supported within CI.

Proof. The schemes X and XI have isomorphic completions along CI, and we write X for the associated Noethe-
rian formal scheme. Now [Orl11, lemma 2.1] shows that the category D0XI is the bounded derived category of
the Abelian category

coh(XI) = {x ∈ CohXI | Supp(x) ⊂ CI},

whilst the subcategory of D0X containing complexes supported within CI is the bounded derived category of

CohCI
(X) = {x ∈ CohX | Supp(x) ⊂ CI}.

But proposition 2.8 ibid. shows that both categories above are equivalent (via pullback along the canonical map
associated to completion) to the category of torsion coherent sheaves on X. In particular, the restriction functor
CohCI

(X)→ coh(XI) is an exact equivalence and passing to bounded derived categories gives the result.

Thus we can identify D0XI and its subcategories cohXI, per
(

XI

ZI

)
with their images in D0X. In particular, per

(
XI

ZI

)
(as a subcategory of D0X) is an algebraic Abelian category equal to the extension-closure of its simple objects
ωCI

[1], 𝒪Ci
(−1) for i ∈ I. The following is then immediate.
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Proof of proposition 5.20, (2)⇐⇒ (3). By [Van04, proposition 3.1.4], the membership of any complex in per
(
X
Y

)
can

be checked locally with respect to the flat topology on Y, in particular with respect to the flat cover Y \ {p}, ZI.
Now if x is supported within contracted curves, the restriction of x to Y \ {p} vanishes and thus x lies in per

(
X
Y

)
if and only if its restriction to XI (i.e. x viewed as an object of D0XI) lies in per

(
XI

ZI

)
, equivalently if x is filtered

by the simples of per
(

XI

ZI

)
.

It is straightforward to generalise this to partial contractions τ : X → Y associated to possibly disconnected
collections of exceptional curves CI ⊂ X, since any complex in D0X decomposes into a direct sum of complexes
with connected support. In particular we can define the category

perI
(
X
Z

)
=

{
x ∈ per

(
X
Z

) ∣∣∣∣∣ Supp x ⊆ ⋃
i∈I
Ci

}

and note that if CI has connected components CI1 , ..., CIK , then this decomposes as

perI
(
X
Z

)
=

⊕
J∈{I1,...,Ik}

perJ
(
X
Z

)
.

But following proposition 5.20, each perJ
(
X
Z

)
is equivalent to the category per

(
XJ

ZJ

)
associated to a formal neigh-

bourhood ZJ of the point pJ = τ(CJ) ∈ Y, and in particular is generated by finitely many complexes which
depend only on the scheme theoretic exceptional fiber CJ overlying CJ. Further, considering the flat cover
ZI1 , ..., ZIk , Y \ {pI1 , ..., pIk } of Y shows that a complex x supported within CI lies in per

(
X
Y

)
if and only if its

restriction to each XJ lies in per
(

XJ

ZJ

)
, and this gives us the descriptions

perI
(
X
Z

)
=

〈
{𝒪Ci

(−1) | i ∈ I} ∪ {ωCJ
[1] | J = I1, ..., Ik}

〉
=

{
x ∈ per

(
X
Y

) ∣∣∣∣∣ Supp x ⊆ ⋃
i∈I
Ci

}
.

A consequence of the equivalence is that the property of a complex x ∈ cohX[0, 1] being ‘perverse’ can be
checked with respect to any partial contraction which maps Supp(x) to a (finite collection of) points. That is to
say, if τ : X → Y and τ ′ : X → Y ′ are two crepant partial contractions which contract all the curves containing
Supp(x), then we have x ∈ per

(
X
Y

)
if and only if x ∈ per

(
X
Y ′

)
.

Since per
(
X
Y

)
away from the contracted curves should mimic per

(
X
X

)
= cohX, we then have the following result

which reduces the construction of per
(
X
Y

)
to a binary choice between cohX and per

(
X
Z

)
on each Ci, effectively

eliminating the need to consider the geometry of the non-commutative scheme (Y,

𝒱

).

Theorem 5.23. If τ : X→ Y is the crepant contraction of the exceptional subset CI ⊂ X, then the associated heart per
(
X
Y

)
is the smallest extension-closed subcategory of D0X containing the full subcategory perI

(
X
Z

)
and all coherent sheaves on X

that are supported within the uncontracted curves
⋃

i/∈I Ci. In other words,

per
(
X
Y

)
=

〈{
x ∈ per

(
X
Z

) ∣∣∣∣∣ Supp x ⊆ ⋃
i∈I
Ci

}
︸ ︷︷ ︸

perI
(
X
Z

)
∪

{
x ∈ cohX

∣∣∣∣∣ Supp x ⊆ ⋃
i/∈I

Ci

}〉
.

Proof. The category perI
(
X
Z

)
clearly lies in per

(
X
Y

)
, while if x ∈ cohX is supported within

⋃
i/∈I Ci then Rτ∗x is

a sheaf on Y and hence x ∈ per
(
X
Y

)
. To furnish the required description of per

(
X
Y

)
, it thus suffices to show that

every object in the category is an extension of complexes of the two given forms.

Now an arbitrary complex x ∈ per
(
X
Y

)
can be written as an extension of its cohomology objects with respect to

cohX, namely x0 = H0(x) and x1[1] = H−1(x)[1]. It is clear from (23) that x0, x1[1] are themselves contained in
per

(
X
Y

)
. Further we have τ∗(x1) = 0 and hence x1 must be supported within the contracted curve

⋃
i∈I Ci, from

which it follows that x1[1] ∈ perI
(
X
Z

)
.
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On the other hand, writing ℐ ⊂ 𝒪X for the ideal sheaf of the closed subscheme
⋃

i∈I Ci, note that y = ℐn · x0
(i.e. the image of the natural map ℐn⊗ x0 → x0) is a subsheaf of x0 (in particular, an object of cohX) supported
within

⋃
i/∈I Ci for n � 0. The quotient x0/y is clearly supported within

⋃
i∈I Ci. Further, applying τ∗ to this

quotient and examining the long exact sequence shows R1τ∗(x0/y) vanishes since R1τ∗(x0) does, i.e. x0/y lies
in per

(
X
Y

)
(and hence in perI

(
X
Z

)
). This concludes our proof that x is an extension of objects of the required

form.

Simple objects and K-theory. It is immediate from theorem 5.23 that an object of per
(
X
Y

)
is simple if and only

if it is simple in some summand perJ
(
X
Z

)
⊂ perI

(
X
Z

)
or a simple coherent sheaf supported on the uncontracted

locus, i.e. we have the following.

Corollary 5.24. For τ : X→ Y the crepant contraction of CI ⊂ X, the simple objects of per
(
X
Y

)
are precisely

skyscrapers 𝒪p at closed points p /∈
⋃

i∈I Ci,

the sheaves 𝒪Cj
(−1) for j ∈ I, and

suspended canonical sheaves ωCJ
[1] for each scheme-theoretic exceptional fiber CJ of τ.

For the rest of this subsection, we make the additional assumption I ∪ νJ 6= ∆, i.e. that the partial contraction
τ : X→ Y associated to CI ⊂ X does not contract every curve. We continue to write CI1 , ..., CIk for the connected
components of CI, and CJ for the scheme theoretic fiber overlying a connected component CJ.

Identifying KX with h(∆ \ J), we can then consider the heart cone of K = per
(
X
Y

)
∈ t-str(D0X).

Lemma 5.25. Under the given assumptions, the heart K = per
(
X
Y

)
has heart cone CK = C0

J∪I.

Proof. If θ lies in the heart cone of per
(
X
Y

)
, then considering the sheaves 𝒪Ci

(n) for n ∈ ℤ on uncontracted
curves and the sheaves 𝒪Ci

(−1) on contracted curves shows θ lies in the chamber C0
J. In particular, θ necessarily

vanishes on the class δJ of skyscraper sheaves. But for a connected component CJ ⊂ CI and a closed point
p ∈ CJ, we see from lemma 5.6 that 𝒪p admits a filtration by the simples of perJ

(
X
Z

)
in which every simple

appears at least once. Thus in K-theory we have

(24) [𝒪p] =
[
ωCJ

[1]
]
+
∑
i∈J
mi [𝒪Ci

(−1)] =
[
ωCJ

[1]
]
+
∑
i∈J
mi αi

for positive integersmi. Since θ is non-negative on each class appearing in the above expression and in particular
vanishes on [𝒪p], it must vanish on every class on the right-hand side. Repeating the argument on all connected
components of CI shows θ(αi) = 0 whenever i ∈ I, and thus the heart cone CK is contained in C0

J∪I.

Conversely if θ lies in C0
J∪I, then in particular θ lies in the heart cone of cohX and therefore θ[x] > 0 whenever x

is a coherent sheaf supported on uncontracted curves in X. On the other hand if x ∈ per
(
X
Y

)
is supported in CI,

then we may assume x is supported in some connected component CJ ⊂ CI so that x lies in perJ
(
X
Z

)
. But then

proposition 5.20 and the expression (24) show that the K-theory class [x] can be expressed as some integral
linear combination

[x] = nδ [𝒪p] +
∑
i∈J
ni [𝒪Ci

(−1)] = nδ δJ +
∑
i∈J
ni αi,

so that θ[x] = 0. Since an arbitrary complex x ∈ per
(
X
Y

)
is an extension of objects of the above forms (theo-

rem 5.23), it follows that θ[x] > 0 and thus C0
J∪I is equal to the heart cone of per

(
X
Y

)
.

Note in particular that for a generic θ ∈ C0
J∪I, every simple of K = per

(
X
Y

)
is orthogonal to θ in K-theory and is

therefore θ-stable. We now show that an object is θ-semistable if and only if it is filtered by the simples– note
this is not immediate as K is not algebraic when some curve is left uncontracted.
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Lemma 5.26. For K = per
(
X
Y

)
as given and a generic vector θ ∈ C0

J∪I, an object of K is θ-semistable if and only if it is
filtered by the simple objects of K. In other words, the category of θ-semistables in K is given by

Kss(θ) =
⊕

J=I1,...,Ik

perJ
(
X
Z

)
⊕

⊕
p∈C\CI

〈
𝒪p

〉
.

Proof. Note that θ lies in the heart cone of K, thus an object k ∈ K is θ-semistable if and only if θ[k] = 0. Then
one implication is clear since the vector θ vanishes on every simple object of per

(
X
Y

)
.

To show the converse, note that theorem 5.23 shows that any x ∈ per
(
X
Z

)
is an extension of the simples of perI

(
X
Z

)
(which are also simples of per

(
X
Y

)
) by some coherent sheaf supported on the uncontracted curves in X. Thus we

show that if x ∈ cohX is supported within
⋃

i/∈I Ci and satisfies θ[x] = 0, then x is an extension of skyscraper
sheaves i.e. has zero-dimensional support.

Indeed if not, then some curve Cj (j /∈ I) lies in Supp(x) and thus there is an exact sequence of coherent sheaves
0 → x ′ → x → 𝒪Cj

(n) → 0 for n � 0. Clearly, all three sheaves in this sequence are supported within
⋃

i/∈I Ci

and thus this sequence is also exact in per
(
X
Y

)
. But then since x is θ-semistable, we have θ

[
𝒪Cj

(−1)
]
= θ(αj) 6 0

which contradicts the fact that θ is generic in C0
J∪I.

§ 5.5 Many flavours of semi-geometric hearts. Consider a partial contraction τ : X→ Y which contracts the
collection of exceptional curves CI ⊂ X with connected components CI = CI1 , ..., CIk . The associated category
of perverse sheaves K = per

(
X
Y

)
, being an amalgamation of per

(
X
Z

)
and cohX, is Noetherian and thus the extension-

closure of its simple objects (i.e. the category Kss
(
C0

J∪I
)
) is a torsion class in K. Taking the corresponding tilt

of per
(
X
Y

)
defines the reversed semi-geometric heart

per
(
X
Y

)
=

〈
perI

(
X
Z

)
[−1] ∪

{
x ∈ cohX

∣∣∣∣∣ Supp x ⊆ ⋃
i/∈I

Ci

}〉
,

which is an Artinian t-structure on D0X.

Considering t-structures in the interval
[
per

(
X
Y

)
, per

(
X
Y

) ]
⊂ t-str(D0X) then opens the floodgates to a plethora of

semi-geometric hearts.

Theorem 5.27. Given K ∈
[
per

(
X
Y

)
, per

(
X
Y

)]
, each restriction K ∩D0XJ (J = I1, ..., Ik) is a tilt of perJ

(
X
Z

)
.

Further, K is uniquely determined by these restrictions and the set
{
p ∈ π−1[m] \ CI | 𝒪p[−1] ∈ K

}
, and this determines

an order- and brick-label–preserving bijection of posets[
per

(
X
Y

)
, per

(
X
Y

) ]
−→

∏
J=I1,...,Ik

tilt
(
perJ

(
X
Z

))
× Bool

(
π−1[m] \ CI

)
.

Here Bool(−) denotes the boolean lattice on closed points, and the poset on the right hand side is given the
product order i.e. (ai) 6 (bi) if and only if ai 6 bi for every i.

Proof. By lemma 2.13 and the discussion following it, hearts K ∈
[
per

(
X
Y

)
, per

(
X
Y

)]
are in bijection with torsion

classes T ⊂ per
(
X
Y

)
that satisfy T ⊆ Kss

(
C0

J∪I
)
. For such a T , lemma 5.26 induces the decomposition

T =
⊕

J=I1,...,Ik

T ∩ perJ
(
X
Z

)
⊕

⊕
p∈C\CI

T ∩
〈
𝒪p

〉
,

and each summand in the above decomposition is closed under extensions and factors (in Kss
(
C0

J∪I
)
) since

T is so. It follows that each TJ = T ∩ perJ
(
X
Z

)
is a torsion class in perJ

(
X
Z

)
, and K ∩ D0XJ is the tilt of

perJ
(
X
Z

)
= per

(
X
Y

)
∩ D0XJ in TJ = T ∩ D0XJ. Further T is clearly determined the summands, i.e. the desired

bijection follows.
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Thus we have many ‘flavours’ of semi-geometric hearts, each arising by mutating the algebraic part of per
(
X
Y

)
and possibly tilting at skyscraper sheaves in its geometric locus. Further we can repeat these constructions on
other birational models and translate the resulting t-structures across the flop functor, this gives more hearts
in D0X of a semi-geometric nature. In what follows we analyse these in relation to the reference heart per

(
X
Z

)
showing that some of these are intermediate and manifest as non-maximal cones in the heart fan.

§ 5.6 Intermediacy of semi-geometric hearts. Throughout this subsection, we consider a birational model
W = νX of X and the crepant contraction W → Y of a subset of exceptional curves CI =

⋃
i∈I Ci ⊂ W

determined by the Dynkin data I ⊂ ∆ \νJ. Thus we can consider semi-geometric hearts in D0W, and transport
them across the flop functor Ψν to obtain an interval of t-structures

Ψν

[
per

(
W
Y

)
, per

(
W
Y

)]
= {ΨνK | per

(
W
Y

)
6 K 6 per

(
W
Y

)
} ⊂ t-str(D0X).

By theorem 5.23, the ‘classic’ semi-geometric heart Ψν per
(
W
Y

)
lies in the interval Ψν

[
cohW, per

(
W
Z

)]
and is

therefore intermediate with respect to H = per
(
X
Z

)
since both Ψν cohW and Ψν per

(
W
Z

)
are so. Further, if we make

the additional assumption I∪νJ 6= ∆ (i.e. not every curve inW is contracted) then combining lemma 2.10 with
lemma 5.25 immediately shows K = Ψν per

(
W
Z

)
has heart cone

CK = (φν̌ )
−1C0

νJ∪I = νC0
J ∩

⋂
i∈I

{φναi = 0}.

In particular, every non-zero and non-maximal cone in Arr0(∆, J) ⊂ HFan(H) is realised as the heart cone of
an intermediate semi-geometric heart.

The reversed semi-geometric heart, however, often lies outside the range H[−1, 0]. Indeed in the extreme case
I = ∆ \ νJ, we have Ψν per

(
W
Y

)
= Ψν per

(
W
Z

)
[−1] and this is intermediate with respect to H if and only if ν is

trivial (i.e. W = X).

More generally, the characterisation of when Ψν per
(
W
Y

)
lies in H[−1, 0] reduces to a combinatorial condition on

the path ν.

Theorem 5.28. Consider a birational model W = νX of X and let τ :W → Y be the crepant contraction of a collection
of exceptional curves CI ⊂ W. Writing σ ⊂ Θ(∆ \ J) for the heart cone of Ψν per

(
W
Y

)
, the following statements are

equivalent.

(1) The shortest J-path µ satisfying σ ⊂ µC0
J gives a sequence of flops from X to W, i.e. W = µX.

(2a) The heart Ψν per
(
W
Y

)
is the supremum of the collection of geometric hearts

{
Ψυ coh(υX) | σ ⊂ υC0

J

}
.

(2b) The heart Ψν per
(
W
Y

)
is equal to the numerically defined tilt Htt(σ).

(3) The reversed semi-geometric heart Ψν per
(
W
Y

)
is intermediate with respect to H = per

(
X
Z

)
.

(3a) The heart Ψν per
(
W
Y

)
is the infimum of the collection of geometric hearts

{
Ψυ coh(υX) | σ ⊂ υC0

J

}
.

(3b) The heart Ψν per
(
W
Y

)
is equal to the numerically defined tilt Htt(σ).

(4) For generic θ ∈ σ, an object of H is θ-stable if and only if it is a simple of Ψν per
(
W
Y

)
.

Further for any non-zero cone σ ∈ Arr0(∆, J), there is a unique birational modelW = νX and a unique partial contraction
W → Y for which σ = C(Ψν per

(
W
Y

)
) and the above statements hold.

Before proving the various equivalences we sketch a proof of the final claim i.e. we show that for any σ ∈ Arr(∆, J)
there is a unique birational model and partial contraction satisfying the said conditions. Now each chamber
νC0

J containing σ as a face uniquely determines a subset I ⊂ ∆ \ νJ such that φν̌σ = C0
νJ∪I, and the data (ν, I)

together determine a partial contraction νX→ νXcon such that C
(
Ψν per

(
νX
νXcon

))
= σ.
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One checks this assignment is well-defined (i.e. choosing a different path ν ′ from C0
J to νC0

J yields the same
partial contraction), thus obtaining a bijective correspondence{
Chambers νC0

J containing σ as a face
}
←−−−−→

{
Partial contractions νX→ νXcon with σ = C

(
Ψν per

(
νX
νXcon

))}
where the inverse map assigns a partial contraction νX→ νXcon to the heart cone C(Ψν cohνX) = νC0

J.

Now there is a unique chamber τ ∈ Arr0(∆, J) such that σ is a face of τ and the chambers τ,C0
J lie on the

same side of any root hyperplane passing through σ. Considering the analogue of lemma 4.16 for the induced
intersection arrangement Arr0(∆, J) ∼= Arr(∆, J), one shows that a spherical J-path µ satisfying σ ⊂ µC0

J has
minimal length among all such paths if and only if µ is an atomic path and τ = µC0

J. It follows that for such a
path µ, the partial contraction µX→ µXcon is the unique one for which the statement (1) holds.

Returning to the setup of theorem 5.28, we now establish the equivalence of statements (1)–(4). The following
equivalences arise from the interplay between numerical tilts and semistable categories.

Proof of (2b)⇐⇒ (4)⇐⇒ (3b). Consider the heart K = Ψν per
(
W
Y

)
and a generic parameter θ ∈ σ. To begin, note

that lemma 5.26 shows that an object in K is θ-semistable if and ony if it is filtered by the simple objects of K,
i.e. the statement (4) is equivalent to showing Hssθ = Kssθ.

But we know K is intermediate with respect to H and has heart cone σ, so corollary 2.14 shows that we have
Hssθ = Kssθ if and only if K is equal to Httθ, thus showing (2b)⇐⇒ (4).

If (2b) (and hence also (4)) is true, then it is immediate that (3b) holds, since Ψν per
(
W
Y

)
(i.e. the tilt of K in

Kssθ) must coincide with Httθ (i.e. the tilt of Httθ in Hssθ). Conversely suppose Ψν per
(
W
Y

)
= Httθ. Since K lies

in [Httθ,H
ttθ], we see that K ∩Httθ[1] is a torsion-free class in Hssθ and in particular is contained in H. But we

have K ∩Httθ[1] = Ψν per
(
W
Y

)
∩ Ψν per

(
W
Y

)
[1]) = Kssθ, so in particular Kssθ ⊂ H and hence corollary 2.14 shows

that both (2b) and (4) hold.

Likewise, the equivalences (2a)⇐⇒ (2b) and (3a)⇐⇒ (3b) only rely on the geometry of heart cones. We show
how to prove the former, the latter being similar.

Proof of (2a)⇐⇒ (2b). It suffices to show that Htt(σ) is the supremum of the given collection of geometric hearts.
If σ is a face of υC0

J = C(Ψυ coh(υX)), then the inequality Ψυ coh(υX) 6 Htt(σ) clearly holds by lemma 2.12.

Conversely, choose generic vectors θυ ∈ υC0
J for each υC0

J containing σ as a face. Since the fan Arr0(∆, J) is
induced from a simplicial hyperplane arrangement, there is a tuple of positive reals (λυ) such that the weighted
average θ =

∑
λυθυ sits generically in the face σ. By the construction of numerical torsion theories, we see that

if h lies in each torsion class Htr(θυ) = Ψυ coh(υX)[1]∩H, then we also have h ∈ Htr(θ) = H
tt(σ)[1]∩H. It follows

that we have Htt(σ) 6 sup
{
Ψυ coh(υX) | σ ⊂ υC0

J

}
, and hence equality holds.

Unsurprisingly, relating these convex-geometric statements to (1) leverages the control we have over composi-
tions of atomic mutations.

Proof of (1)⇒(2a). First consider the case when the shortest such path µ is given by the empty word ∅, i.e.W = X

and σ = C0
J∪I is a face of C0

J. Then for K = per
(
X
Y

)
and θ ∈ σ generic, the category Kssθ (as computed in

lemma 5.26) clearly lies in H and thus corollary 2.14 shows we have K = Httθ, i.e. statement (2b) (and hence
also (2a)) holds.

Now supposeW,Y, σ are as in the general situation and µ is the shortest spherical J-path satisfying σ ⊂ µC0
J, i.e.

φν̌ σ = CµJ∪I for some I ⊂ µJ. If (1) holds, then we have W = µX and thus W → Y is the crepant contraction
of CI ⊂W. The reasoning above then shows

per
(
W
Y

)
= sup

{
Ψυ coh(υW) | C0

µJ∪I ⊂ υC0
µJ

}
∈ t-str(D0W),
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and it suffices to restrict the above expression to spherical µJ-path υ that are atomic. But if υ is atomic then
so is υµ, since every hyperplane crossed by υ must contain σ while the choice of µ ensures that no hyperplane
crossed by it contains σ. Thus have

Ψµ per
(
W
Y

)
= sup

{
Ψµ ◦ Ψυ coh(υW) | C0

µJ∪I ⊂ υC0
µJ

}
= sup

{
Ψυµ coh(υµX) | σ ⊂ υµC0

J

}
To see this is equivalent to the required statement (2b), observe that for ny spherical µJ-path υ we have
C0

µJ∪I ⊂ υC0
µJ if and only if σ ⊂ υµC0

J, and every maximal chamber containing σ as a face can be realised in
this way since φµ̌ : Arr(∆, J)→ Arr(∆,µJ) is an isomorphism of fans.

We thus have the implications (1)⇒ (2a) ⇐⇒ (2b) ⇐⇒ (4) ⇐⇒ (3a) ⇐⇒ (3b). Note that the implication
(3b)⇒(3) is immediate from definitions, so we conclude the proof of theorem 5.28 as follows.

Proof of (3)⇒(4). Suppose (3) holds i.e. we have Ψν per
(
W
Y

)
⊂ H[−1, 0]. Since K = Ψν per

(
W
Y

)
also lies in H[−1, 0],

we see that for generic θ ∈ σ the category Kssθ = Ψν per
(
W
Y

)
∩Ψν per

(
W
Y

)
[1] lies in H, and hence by corollary 2.14

and corollary 5.24 we conclude that every object in Hssθ is filtered by the simples of K i.e. (4) holds.

Proof of (4)⇒(1). The path µ as defined in (1) gives an atomic sequence of flops from X, defining a birational
modelW ′ = µX. Further since σ is a face of µC0

J, this birational model admits a partial contractionW ′ → Y ′ such

that C
(
Ψµ per

(
W ′

Y ′

))
= σ. The statement (1) (and hence (4)) holds for this partial contraction by construction,

so we see that an object of H is θ-stable if and only if it is a simple object of Ψµ per
(

W ′

Y ′

)
.

Choosing an atomic sequence of flops υ from W ′ to W, we note that the path υ from µC0
J to υµC0

J = νC0
J only

crosses hyperplanes containing σ while the path µ by definition never passes through a chamber containing σ.
Thus the composite path υµ is also atomic and corollary 4.9 allows us to write Ψν = Ψµ ◦ Ψυ.

Suppose (4) holds for W → Y, i.e. an object of H is θ-stable if and only if it is a simple of Ψν per
(
W
Y

)
. Thus we

have the equality of sets{
Ψ−1

µ h | h ∈ H is θ-stable
}

=
{
s | s ∈ per

(
W ′

Y ′

)
is simple

}
=

{
Ψυt | t ∈ per

(
W
Y

)
is simple

}
.

We need to show W =W ′, or equivalently that υ is the empty path. If not, it has length > 1 so can be written
as υ = νi · υ ′ for some µJ-path υ ′ and i ∈ ∆ \ υ ′µJ. In other words, the final curve flopped by υ is Ci ⊂ υ ′W ′,
which has proper transform Cι(i) ⊂W.

Further the wall υ ′C0
J ∩ νiυ ′C0

J contains the cone σ, so we must have ι(i) ∈ I. Thus the curve Cι(i) ⊂ W is
contracted by τ :W → Y.

In particular the object t = 𝒪Cι(i)
(−1) is simple in per

(
W
Y

)
, and tracking it across the flop functors using

lemma 4.3 we see that

Ψυ(t) = Ψυ′ ◦ Ψi(𝒪Cι(i)
(−1))

= Ψυ′ (𝒪Ci
(−1)) [−1]

∈ per
(

W ′

Z

)
[−2,−1].

But all simples of per
(

W ′

Y ′

)
must lie in per

(
W ′

Z

)
, this furnishes the desired contradiction.

In summary, we have the following analysis of non-trivial cones in Arr0(∆, J).

Corollary 5.29. Suppose σ ∈ Arr0(∆, J) is a non-zero cone. Then there is a unique birational model W = νX that sits
in a partial contraction τ :W → Y such that C

(
Ψν per

(
W
Y

))
= σ and the translate of any t-structure in [per

(
W
Y

)
, per

(
W
Y

)
]

across the flop functorΨν is intermediate with respect toH = per
(
X
Z

)
. In this case the t-structuresΨν per

(
W
Y

)
andΨν per

(
W
Y

)
are determined numerically as

Ψν perW = Htt (σ) , Ψν perW = Htt (σ) ,
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and thus an intermediate heart K ∈ tilt(H) satisfies σ ⊂ CK if and only if it lies in the interval Ψν

[
per

(
W
Y

)
, per

(
W
Y

)]
.

The brick-labelled partial order on Ψν

[
per

(
W
Y

)
, per

(
W
Y

)]
can then be described using theorem 5.27. Combined

with corollaries 4.7 and 5.14, for any non-zero θ ∈ Θ(∆, J) we thus have a complete description of the interval
[Httθ,H

ttθ] ⊂ tilt(H) and the brick labels for covering relations in it.

§ 6 Dynamics of the nef monoid

When studying a heart in relation to the poset of t-structures, one can equivalently study more amiable families
that limit to the said heart. Thus in § 5.3, our analysis of the heart Ψν cohW (associated to the birational model
W = νX) is greatly simplified by studying the poset Ψν

[
per

(
W
Z

)
, cohW

]
alg which has the distinct advantage of

being a collection of algebraic hearts defined convex-geometrically, and is thus being readily tracked under
mutation functors. In this section we instead study families of t-structures which sit in the Picard–group orbit
of the reference heart H = per

(
X
Y

)
, shedding light on the global structure of the partial order on tilt(H).

To spell this out, note that tensoring by any line bundle ℒ ∈ PicX naturally gives an autoequivalence of DbX.
The functor preserves support and evidently restricts to an autoequivalence of D0X, whence we have an action
of PicX on D0X. We focus on the induced action on the poset of t-structures t-str(D0X), where ℒ ∈ PicX thus
twists the heart K to

ℒ⊗ K = {ℒ⊗ k | k ∈ K} .

In what follows we study the orbit of H in relation to the poset tilt(H), setting up notation and stating key
results. Before proving these results in § 6.3, we examine the most important consequences– the classifications
of intermediate t-structures and bricks– in §§ 6.1 and 6.2 respectively.

The action of a single line bundle. Certain twists can be described explicitly– namely, if we write {ℒi | i ∈ ∆\J}
for the standard basis of PicX (i.e. the line bundle ℒi has degree 1 on Ci ⊂ X and is trivial on other exceptional
curves), then we have the following.

Proposition 6.1. Fix i ∈ ∆ \ J and n > 0, and consider the line bundle ℒ = ℒ⊗ni . The following statements hold.

(1) The heart ℒˇ⊗H lies in H[−1, 0], and is the tilt of H in the smallest torsion class containing 𝒪Ci
(−n− 1)[1].

(2) The heart ℒ⊗H[−1] lies in H[−1, 0], and is the tilt of H in the smallest torsion-free class containing 𝒪Ci
(n− 2).

If we denote by X→ Xi the crepant partial contraction of
⋃

j∈∆\{i} Ci (i.e. all exceptional curves except Ci), then
it is clear from the above description that we have chains of inequalities

H > ℒǐ ⊗H > (ℒǐ )
⊗2 ⊗H > ... > per

(
X
Xi

)
> per

(
X
Xi

)
> ... > ℒ⊗2i ⊗H[−1] > ℒi ⊗H[−1] > H[−1].

Proposition 6.2. In H, the torsion class H∩per
(

X
Xi

)
[1] is generated by the set {𝒪Ci

(n)[1] | n 6 −2} while the torsion-free

class H ∩ per
(

X
Xi

)
is generated by {𝒪Ci

(n) | n > −1}. In other words, we have

per
(

X
Xi

)
= inf

{
(ℒǐ )

⊗n ⊗H | n > 0
}
, per

(
X
Xi

)
= sup

{
ℒ⊗ni ⊗H[−1] | n > 0

}
.

The actions of multiple nef monoids. In fact we prove a vast generalisation of proposition 6.2, realising
geometric and semi-geometric hearts as limits of twists by line bundles on birational models. To explain this,
note that if W = νX is a birational model then the natural action of PicW on D0W can be translated across
the flop functor Ψν to an action on D0X. For brevity we continue to denote the action on D0X by ⊗ , i.e. for
ℒ ∈ PicW and h ∈ D0X we have

ℒ⊗ h = Ψν

(
ℒ⊗ Ψ−1

ν h
)

where the tensor product on the right-hand side is over 𝒪W .
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Now PicW sits as the lattice of integral points in the vector space PicℝW, which we identify (as in propo-
sition 5.5) with Picℝ X ∼= {θ ∈ Θ(∆ \ J) | θ(δJ) = 0} by taking proper transforms across the birational map
ρ :W 99K X. Thus each cone σ ∈ Arr(∆, J) determines a monoid PicW ∩ρ∗σ which contains line bundles onW
whose proper transform to X lies in σ. We simply write PicW ∩ σ for this monoid, leaving the birational map ρ
implicit.

Given a cone σ ∈ Arr(∆, J) we can always choose a birational model W = νX such that the monoid PicW ∩ σ
lies in the nef cone Pic+W. We say such a birational model W is σ-positive, and the condition is equivalent to
saying σ lies in the heart cone C(Ψν cohW). For such σ andW we consider the (PicW ∩σ)-orbit of the reference
heart H = per

(
X
Y

)
.

The following result then shows that the orbit is independent of the choice of σ-positive birational model, lies
in tilt(H), and limits to the (semi-)geometric heart determined by σ.

Theorem 6.3. Given a sequence of flops ν from X with corresponding birational modelW = νX, the following statements
hold in D0X.

(1) Let ℒ ∈ PicW be a line bundle. Then the heart ℒ ⊗ H is intermediate with respect to H if and only if ℒˇ is nef,
and in this case ℒ⊗H lies in the interval [Ψν cohW,H].

Likewise the heart ℒ⊗H[−1] is intermediate with respect to H if and only if ℒ is nef, and in this case ℒ⊗H[−1]
lies in the interval [H[−1], Ψν cohW].

(2) Let σ ∈ Arr(∆, J) be a a cone such that W is σ-positive, i.e. a face of C(Ψν cohW). Then

Htt(σ) = inf {ℒˇ⊗H | ℒ ∈ PicW ∩ σ} , Htt(σ) = sup {ℒ⊗H[−1] | ℒ ∈ PicW ∩ σ} .

Further, suppose W ′ ∈ Bir
(
X
Z

)
is another birational model, and ℒ ′ ∈ PicW ′ is a line bundle with proper transform

ℒ ∈ PicW. Then the following statements hold.

(3) If ℒ ′̌ ⊗H ∈ [Ψν cohW,H] or ℒ ′ ⊗H ∈ [H[−1], Ψν cohW], then ℒ is nef on W.

(4) If the hearts ℒ⊗H and ℒ ′ ⊗H are both intermediate with respect to H, then they are in fact equal i.e. we have an
equality of t-structures ℒ⊗H = ℒ ′ ⊗H.

Likewise if the hearts ℒ⊗H[−1] and ℒ ′ ⊗H[−1] are both intermediate with respect to H, then they are equal.

Thus the limit of all twists ℒˇ⊗ H ranging over ℒ ∈ Pic+W is the geometric heart Ψν cohW, which is fixed
by the action of any ℒ ∈ PicW. More generally given any non-zero cone σ ∈ Arr(∆, J), corollary 5.29 gives a
birational model W = νX and a partial contraction W → Y such that Htt(σ) = Ψν per

(
W
Y

)
. Then the monoid

PicW ∩ σ can be naturally identified with Pic+ Y, and the limit of the twists ℒˇ⊗H ranging over ℒ ∈ PicW ∩ σ
is precisely the heart per

(
W
Y

)
which is geometric on the curves ‘detected by’ PicW ∩ σ.

Global structure of the order. Theorem 6.3 (4) in shows that the sub-poset of alg-tilt(H) given by

(25)
{
ℒˇ⊗H | ℒ ∈ Pic+W for some W ∈ Bir

(
X
Z

)}
t

{
ℒ⊗H[−1] | ℒ ∈ Pic+W for some W ∈ Bir

(
X
Z

)}
is naturally in bijection with PicX t PicX and decomposes in accordance with the movable fan (17). Analysing
alg-tilt(H) in comparison with this subposet makes its highly regular structure more transparent.

To set notation, suppose W = νX is a birational model of X with exceptional curves Ci ⊂W (i ∈ ∆ \ νJ). The
intersection pairing with these 1-cycles gives an isomorphism deg : PicW → ℤ∆\νJ which assigns ℒ ∈ PicW to
the integer tuple degℒ = ((ℒ · Ci))i∈∆\νJ.

Write 0, 1 ∈ ℤ∆\νJ for the tuples whose entries are all 0 or all 1 respectively.

We endow ℤ∆\νJ with the product order, i.e. for tuples (ai), (bi) ∈ ℤ∆\νJ we have (ai) 6 (bi) if and only if
ai 6 bi for each i ∈ ∆ \ νJ. Thus for example a line bundle ℒ ∈ PicW is nef if and only if 0 6 degℒ, and two
line bundles ℒ,ℒ ′ ∈ PicW satisfy degℒ 6 degℒ ′ if and only if ℒ ′ ⊗ ℒˇ is nef.
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The partial order on various twists and shifts of H can then be described as follows.

Corollary 6.4. Given line bundlesℒ,ℒ ′ on some birational modelW ofX and integers i, j ∈ ℤ, we haveℒ⊗H[i] > ℒ ′⊗H[j]
in t-str(D0X) if and only if either i > j, or i = j and degℒ > degℒ ′.

Thus the poset {ℒ⊗H[i] | ℒ ∈ PicW, i ∈ ℤ} is isomorphic to ℤ× ℤ|∆\J| with the lexicographic order.

Proof. If i = j, then it is clear that ℒ⊗H[i] > ℒ ′⊗H[j] if and only if H > ℒ ′⊗ℒˇ⊗H, which by theorem 6.3 (1)
occurs if and only if ℒ⊗ ℒ ′̌ is nef i.e. degℒ > degℒ ′.

Thus to conclude it suffices to show ℒ⊗H > ℒ ′⊗H[−1] for all ℒ,ℒ ′ ∈ PicW. Now we may write ℒ = ℒ+⊗ℒ−̌

where the line bundles ℒ+,ℒ− ∈ PicW are nef. Theorem 6.3 (1) shows there are inequalities ℒ+⊗H[−1] > H[−1]
and ℒ−̌ ⊗H > Ψν cohW. Applying the functor ℒ−̌ ⊗ (−)[1] to the first inequality thus yields ℒ⊗H > Ψν cohW,
and a similar argument gives Ψν cohW > ℒ ′ ⊗H[−1] from which the conclusion follows.

The poset (25) thus decomposes as a union of sub-posets⋃
W∈Bir

(
X
Z

)
({

ℒˇ⊗H
∣∣ ℒ ∈ Pic+W

}
t

{
ℒ⊗H[−1]

∣∣ ℒ ∈ Pic+W
})
,

and corollary 6.4 let us read off the order in each component of the decomposition. It can be shown that there
are no further relations, i.e. if two elements of (25) are comparable then the relation necessarily arises in one
of the ways described in corollary 6.4 for some birational model W.

Finally, we compare the above orbits of H with other intermediate algebraic hearts.

Theorem 6.5. For any t-structure K ∈ tilt+(H), there is a birational model W of X and line bundles ℒ,ℒ ′ ∈ PicW
such that

0 > degℒ > degℒ ′ > degℒ− 1, and ℒ⊗H > K > ℒ ′ ⊗H.

Likewise for any K ∈ tilt−(H), there is a birational model W of X and line bundles ℒ,ℒ ′ ∈ PicW such that

0 6 degℒ < degℒ ′ 6 degℒ+ 1, and ℒ⊗H[−1] 6 K < ℒ ′ ⊗H[−1].

§ 6.1 Every torsion theory on the perverse heart is numerical. The above analysis of tilt(H) paves the way
for this result, showing that the heart fan of H detects every intermediate t-structure and thus an arbitrary heart
in tilt(H) must be one of the algebraic, geometric, or semi-geometric t-structures described in §§ 3 to 5.

Theorem 6.6. Let K ∈ tilt(H) be an arbitrary tilt of H. Then the heart cone C(K) is non-zero.

We prove theorem 6.6 over the course of this subsection. Thus, fix an arbitrary K ∈ tilt(H). If K is algebraic, then
C(K) is full-dimensional (in particular, non-zero) by theorems 4.1 and 4.20 so we may assume K is non-algebraic.
One then expects C(K) to be a cone in Arr(∆, J), and the following lemma is the key tool we exploit.

Lemma 6.7. Given K ∈ tilt(H), suppose there is a non-zero cone σ ∈ Arr(∆, J) and a σ-positive birational model W
such that ℒˇ⊗H > K > ℒ⊗H[−1] for every ℒ ∈ PicW ∩ σ. Then the heart cone C(K) contains σ and is in particular
non-zero.

Proof. The given conditions combined with theorem 6.3 (2) show Htt(σ) > K > Htt(σ), so the result follows
from lemma 2.12.

It is relatively straightforward to obtain the bound on one side for lemma 6.7.
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Lemma 6.8. If K ∈ tilt(H) is not algebraic, then there is a non-zero cone σ ∈ Arr(∆, J) and a σ-positive birational
model W such that ℒˇ⊗H > K for every ℒ ∈ PicW ∩ σ.

Likewise, there is a (possibly different) non-zero cone σ ′ ∈ Arr(∆, J) and a σ ′-positive birational model W ′ such that
K > ℒ ′ ⊗H[−1] for every ℒ ′ ∈ PicW ′ ∩ σ ′.

Proof. We prove the first statement, the second being analogous. Since K is non-algebraic, corollary 4.7 shows
that K is not covered by an algebraic heart i.e. if Kn ∈ alg-tilt(H) satisfies Kn > K then there is an algebraic
heart Kn+1 satisfying Kn ⋗ Kn+1 > K. Starting with the tautological relation H = K0 > K, this produces an
infinite chain K0 > K1 > K2 > ... > K approaching K from above using elements of tilt+(H).

By theorem 6.5, for each Kn there is a birational model Wn and line bundles ℒn,ℒ ′n ∈ PicWn such that
ℒn ⊗ H > Kn > ℒ ′n ⊗ H and 0 > degℒn > degℒ ′n > degℒn − 1. But there are only finitely many birational
models of X, so we can pass to a subsequence and reindex if necessary to assume all birational models Wn are
equal. Thus there is a W = νX ∈ Bir

(
X
Z

)
and a sequence of anti-nef line bundles ℒ1,ℒ2, ... ∈ PicW such that

ℒn ⊗H > K for each n.

Claim there is some integral exceptional curve Ci ⊂W such that (ℒn · Ci) attains arbitrarily large magnitude,
i.e. for any N < 0 there is some n with (ℒn · Ci) < N. If not, we can choose a line bundle ℒ∞ ∈ PicW such
that degℒ∞ 6 degℒn − 1 for each n. Thus degℒ ′n > degℒ∞ for each n, which shows ℒ ′n ⊗ H > ℒ∞ ⊗ H and
hence each Kn lies in the interval [ℒ∞ ⊗H,H]. But this contradicts theorem 4.1 (3), which states that intervals
in tilt+(H) are finite.

Writing ℒ ∈ PicW for the line bundle which has degree 1 on Ci and is trivial elsewhere, we therefore see that for
everyN < 0 there is an n such that ℒ⊗N⊗H > ℒn⊗H and thus ℒ⊗N⊗H > K. Choosing σ ∈ Arr(∆, J) ∼= Mov(X)
to be the ray generated by (the proper transform of) ℒ then yields the result.

As an immediate consequence, we see that any t-structure bounded by a geometric heart is numerical.

Lemma 6.9. If K ∈ tilt(H) is such that K > Ψν cohW or Ψν cohW > K for some birational model W = νX, then C(K)

is non-zero.

Proof. Again we may assume K is non-algebraic and lies in [Ψν cohW,H], so that lemma 6.8 gives a non-zero cone
σ ∈ Arr(∆, J) and a σ-positive birational model W ′ such that ℒ ′̌ ⊗H > K > Ψν cohW for every ℒ ′ ∈ PicW ′ ∩ σ.
But then theorem 6.3 (3) shows that for each ℒ ′ ∈ PicW ′ ∩ σ, the proper transform ℒ ∈ PicW is also nef and
by theorem 6.3 (4) satisfies ℒ ′̌ ⊗H = ℒˇ⊗H. In particular, W is σ-positive and we have ℒˇ⊗H > K for every
ℒ ∈ PicW∩σ. On the other hand we also have the inequality K > Ψν cohW > ℒ⊗H[−1] for every ℒ ∈ PicW∩σ,
so lemma 6.7 yields the conclusion.

We deduce analogous bounds on hearts K ∈ tilt(H) which contain skyscraper sheaves 𝒪p (for p ∈ X) or shifts
thereof, noting that a priori each 𝒪p is only a two-term complex in K[0, 1].

Lemma 6.10. Suppose Ci ⊂ X is an integral exceptional curve with a closed point p ∈ Ci, and ℒi ∈ PicX is the
line bundle which has degree 1 on Ci and is trivial elsewhere. Writing σ ∈ Arr(∆, J) for the cone generated by ℒi, the
following statements hold for any K ∈ tilt(H).

(1) If 𝒪p ∈ K, then K > ℒ⊗H[−1] for every ℒ ∈ PicX ∩ σ.

(2) If 𝒪p ∈ K[1], then ℒˇ⊗H > K for every ℒ ∈ PicX ∩ σ.

In particular if there are closed points p, q ∈ Ci such that 𝒪p ∈ K and 𝒪q ∈ K[1], then C(K) is non-zero.

Proof. If p ∈ Ci is a closed point such that 𝒪p ∈ K, then 𝒪p lies in the torsion-free class F = K ∩ H. The exact
triangle 𝒪Ci

(−1) → 𝒪p → 𝒪Ci
(−2)[1] → 𝒪Ci

(−1)[1] shows 𝒪Ci
(−1) is a sub-object (in H) of 𝒪p, thus we also

have 𝒪Ci
(−1) ∈ F. Further, inductively considering extensions 𝒪Ci

(n) → 𝒪Ci
(n + 1) → 𝒪p → 𝒪Ci

(n)[1] shows
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𝒪Ci
(n) ∈ F for every n > −1, and thus F contains each torsion class ℒ⊗ni ⊗ H[−1] ∩ H by proposition 6.1.

Statement (1) follows, and the proof of (2) is analogous.

Thus given an arbitrary non-algebraic t-structure K, we show C(K) is non-zero by comparing K against some
appropriately chosen geometry. The following lemma informs this choice.

Lemma 6.11. Given K ∈ tilt(H), there is a sequence of flops ν from X with corresponding birational model W = νX

such that K lies in Ψν per
(
W
Z

)
[−1, 0] and contains the objects Ψν𝒪Ci

(−1) for each exceptional curve Ci ⊂W.

Proof. Consider the sub-poset of tilt(H) given by

[K,H] ∩ {ΨνH | ν a spherical J-path},

where we use the notational shorthand ΨνH = Ψν (flmodνΛν) as in § 3.4 and continue to make the identification
flmodνΛν = per

(
νX
Z

)
as in § 5.1. The above poset is non-empty (it contains H) and finite, so has a minimal

element determined by some spherical J-path ν. This determines our sequence of flops ν. Evidently we have
H > ΨνH > K and K > H[−1] > ΨνH[−1], i.e. K lies in ΨνH[−1, 0].

Now the heart ΨνH lies in H[−1, 0] and K[0, 1]. Suppose there is an i ∈ ∆ \ νJ such that K does not contain
ΨνSi = Ψν𝒪Ci

(−1). Then ΨνSi, being simple in ΨνH, necessarily lies in K[1] and thus in H since H[−1]∩K[1] = 0.
In particular we have ΨνSi ∈ Vν = H ∩ Ψν, and thus (by theorem 4.6) the inequality H > ΨνH > ΨνiνH.

But we also have Ψνiν > K, since the torsion class K[1]∩H contains Uν = ΨνH[1]∩H and ΨνSi and hence also
(by the same proposition) Uνiν = ΨνiνH[1] ∩ H. This contradicts the minimality of ΨνH, so K must contain
every simple ΨνSi for i ∈ ∆ \ νJ.

Say a t-structure K ∈ t-str(D0X) lives on X if there are inclusions 〈𝒪Ci
(−1) | i ∈ ∆ \ J〉 ⊆ K ⊆ per

(
X
Z

)
[−1, 0],

i.e. the sequence of flops for K given by the above lemma is trivial. Then lemma 6.11 explains that up to the
application of a flop functor, it suffices to work only with those K ∈ tilt(H) which live on X.

This additional hypothesis gives us tremendous control on the torsion pair associated to K, in particular we
show that every skyscraper on X is either torsion or torsion-free.

Lemma 6.12. If K ∈ tilt(H) lives on X and p ∈ X is a closed point in the exceptional locus, then 𝒪p lies in a single
cohomological degree with respect to K i.e. we have 𝒪p ∈ K or 𝒪p ∈ K[1].

Proof. The intermediate heart K induces the torsion pair H = (K[1] ∩ H) ∗ (K ∩ H), and thus a filtration
t → 𝒪p → f → t[1] with t ∈ K[1] ∩ H, f ∈ K ∩ H. In particular, considering K-classes [t] =

∑
i∈∆\J tiαi

and [f] =
∑

i∈∆\J fiαi, we see that for each i the ti, fi are non-negative integers satisfying ti + fi = δi.

Here the coefficients δi of δJ = [𝒪p] correspond to ranks of the summands of𝒱
(
X
Z

)
=

⊕
i∈∆\J 𝒩i as in lemma 5.6.

In particular we have δ0 = rk(𝒩0) = 1 (since 𝒩0 = 𝒪X by construction), so we must have (t0, f0) = (0, 1) or
(t0, f0) = (1, 0).

If f0 = 0, then f lies in the category 〈Si | i ∈ ∆ \ J〉 but this implies Hom(𝒪p, f) = 0 since each Si = 𝒪Ci
(−1) lies

in 𝒪p
⊥. Thus the map t→ 𝒪p is an isomorphism and 𝒪p lies in K[1].

On the other hand if t0 = 0, then t lies in the category 〈Si | i ∈ ∆ \ J〉, and hence in K ∩H (since K lives on X).
Thus in fact t = 0, and 𝒪p = f ∈ K.

This gives us the necessary ingredients to show that an arbitrary t-structure in tilt(H) is numerical.

Proof of theorem 6.6. We may assume K is non-algebraic and, applying a flop functor if necessary, lives on X.
Thus by lemma 6.12, for every closed point p in the exceptional locus C =

⋃
i∈∆\J Ci ⊂ X, either 𝒪p or 𝒪p[−1]

lies in K.
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If there is some curve Ci with two points p, q ∈ Ci such that 𝒪p ∈ K and 𝒪q[−1] ∈ K, then we obtain the
conclusion using lemma 6.10.

Otherwise, since C is connected, either K or K[1] contains the subcategory {𝒪p | p ∈ C}. If 𝒪p ∈ K for every
p ∈ C, then (by lemma 6.10) we have K > ℒ ⊗ H[−1] for every ℒ ∈ Pic+ X and thus K > cohX. Further, the
torsion-free part K ∩ H contains Hss(C0

J) = 〈𝒪p | p ∈ C〉 so in fact K > cohX and thus C(K) 6= 0 by lemma 6.9.
The case when 𝒪p[−1] ∈ K for every p ∈ C is handled likewise.

§ 6.2 Classification of bricks. Using the above classification of t-structures we now show that every brick in
H = per

(
X
Z

)
must arise from an algebraic or geometric simple.

Theorem 6.13. Let b ∈ H be a brick. Then either

(1) there is a spherical J-path ν and a closed point p ∈ νX such that b = Ψν𝒪p, or

(2) there is a semibrick S ⊂ H that generates a functorially finite torsion class and contains b. In this case, there is a
J-path ν and an index i ∈ ∆ \ νJ such that b ∈ {ΨνSi[1], ΦνSi}.

In particular, the K-theory class [b] ∈ h(∆ \ J) is a primitive restricted root of the form φναi or δJ.

We prove the theorem over the course of this subsection. Accordingly, fix a brick b ∈ H and consider the torsion
pair H = T ∗ F where T is the minimal torsion class containing b. Write K = F ∗ T [−1] for the tilt, and note that
b[−1] is a simple of K (proposition 2.6).

If K is geometric (i.e. K ∈ Ψν[cohW, cohW] for some birational model W = νX), then the simples of K are of the
form Ψν𝒪p or Ψν𝒪p[−1] for closed points p ∈W. It follows that b must be of the form Ψν𝒪p.

On the other hand if K is algebraic, then T is a functorially finite torsion class generated by the semibrick {b}

as required. The heart K must be given by ΨνH or ΦνH[−1] for some J-path ν, and it follows that every simple
of K (in particular, b[−1]) is of the form ΨνSi or ΦνSi[−1] as required.

Thus it remains to consider the case when K is semi-geometric. Now Lemma 6.11 gives a spherical J-path υ such
that Ψ−1

υ K lives on W. In particular K is a tilt of ΨυH, and the corresponding torsion class T ∩ Vυ ∈ tors(ΨυH)

is minimal containing b. Hence replacing K by Ψ−1
υ K if necessary, we may assume K is a semi-geometric heart

that lives on X.

It follows that CK = C(per
(
X
Y

)
) for some partial contraction τ : X→ Y, which contracts the curves CI =

⋃
i∈I Ci

determined by a non-empty proper subset I ⊂ ∆ \ J. Considering the subcategory D0XI ⊂ D0X containing
complexes supported on CI, we study the restriction KI = K ∩D0XI in relation to HI = per

(
X
Z

)
∩D0XI.

Lemma 6.14. The category KI is an algebraic tilt of HI.

Proof. That KI is a tilt of HI follows from theorem 5.27. If KI weren’t algebraic, then K would be geometric
on a larger number of curves than per

(
X
Y

)
, whence C(K) would be a larger-dimensional cone than C(per

(
X
Y

)
), a

contradiction.

Thus every simple object of K is either one of the finitely many simples of KI, or of the form 𝒪p or 𝒪p[−1] for
closed points p ∈ X \CI. If b[−1] = 𝒪p[−1] we are again done, so we only need to consider the case when b[−1]
is a simple of KI. Note this guarantees that CI is connected and b is supported on every point of CI.

Lemma 6.15. Under the above assumptions, we have 𝒪p ∈ T whenever p ∈ CI.

Proof. Consider a curve Ci that is not contracted by τ, so that the restriction of K to Ci is geometric. Thus K
contains the sheaf k = 𝒪Ci

(−1), which has some simple sub-object s ∈ K (proposition 2.6).

If s is supported in X \ CI, then s 6= b and thus s lies in H. This is only possible if s = 𝒪p for some p ∈ X \ CI,
but in that case Hom(s, k) = 0 which is a contradiction.
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It follows that s is a simple of KI, and considering supports shows the inclusion s→ k must factor through the
object 𝒪p[−1] where p is the unique closed point in Ci ∩CI. Since K was chosen to live on X, 𝒪p lies in a single
cohomological degree with respect to K (lemma 6.12) and thus 𝒪p[−1] must lie in KI.

But KI is an algebraic tilt of HI, in particular the objects of KI are determined by inequalities on K-theory. It
follows that for any q ∈ CI, the object 𝒪q cannot lie in KI, and thus 𝒪q[−1] ∈ KI ⊂ K for every q ∈ CI. The
result follows.

Lemma 6.16. If Ci is a curve not contracted by τ : X→ Y, then Hom(𝒪Ci
(−1), b) = Hom(b,𝒪Ci

(−1)) = 0.

Proof. Consider the unique point p ∈ Ci ∩ CI. Since 𝒪p lies in the torsion class T generated by b, there is a
(necessarily non-split) surjection b� 𝒪p in H. Now any non-zero morphism 𝒪Ci

(−1)→ b would factor through
𝒪p, but this would split the surjection b� 𝒪p, furnishing a contradiction. Thus Hom(𝒪Ci

(−1), b) = 0. On the
other hand, b evidently lies in K[1] while 𝒪Ci

(−1) lies in K, thus Hom(b,𝒪Ci
(−1)) = 0 too.

By the above lemma, we thus have a semibrick

S = {b} ∪ {𝒪Ci
(−1) | i ∈ ∆ \ (J ∪ I)} ⊂ H.

Write T ′ ∈ tors(H) for the torsion class generated by S, and K ′ for the corresponding tilt of H. We use this to
conclude the proof of theorem 6.13.

Lemma 6.17. The torsion class T ′ is functorially finite, i.e. K ′ is an algebraic tilt of K.

Proof. Evidently T ′ ∩D0XI = T ∩D0XI, so that K ′ ∩D0XI = KI.

If Ci is a curve not contracted by τ, then T contains the sheaf 𝒪p for p ∈ CI ∈ Ci, and thus it contains the
quotient ωCi

[1]. Since T ′ also contains 𝒪Ci
(−1), it follows that T ′ in fact contains the full subcategory

〈ωCi
[1],𝒪Ci

(−1)〉 = {x ∈ per
(
X
Z

)
| Supp(x) ⊂ Ci}.

In other words, K ′ restricts to the algebraic category H[−1] on every curve Ci not contracted by τ. Since K ′

restricts to an algebraic category on CI too, K ′ cannot be a (semi-)geometric tilt of H hence we are done.

§ 6.3 Actions of Picard groups.We now repay the technical debt, and prove propositions 6.1 and 6.2 and theo-
rems 6.3 and 6.5 by examining the actions of Picard groups on t-structures, heart cones, and modifying modules.
This builds upon the work of Hirano–Wemyss [HW23, §7] on the subject.

Actions on the heart fan. The action of PicX on the Grothendieck group KX is straightforward to analyse
after choosing appropriate bases– on PicX we consider the generators {ℒi | i ∈ ∆ \ J} where ℒi = (det𝒩i)̌ has
degree 1 on Ci ⊂ X and is trivial on other exceptional curves. On the other hand, the classes δJ = [𝒪p] and
αi = [𝒪Ci

(−1)] (i ∈ ∆ \ J) give a basis for KX, and then the action PicX � KX is given by

(26) ℒi ⊗ δJ = δJ, ℒi ⊗ αj =

αj + δJ, j = i

αj, otherwise
.

This clearly preserves the root system, i.e. the transposed action on Θ(∆\J) given by ℒ·θ = θ◦(ℒ⊗−) preserves
the intersection arrangement Arr(∆, J) and in particular takes chambers to chambers. This can be visualised
by noting that the functionals {αi | i ∈ ∆ \ I} give coordinates on the level set {δJ = 1} and the action of PicX
to the level set restricts to translations along the lattice of integral points.

IfW = νX is a different birational model, then flop functor Ψν : D0W → D0X gives an isomorphism of K-theory
KW → KX which maps δνJ 7→ δJ. Writing βi = [Ψν𝒪Ci

(−1)] ∈ KX (i ∈ ∆ \ νJ) for the images of the simples
of per

(
W
Z

)
, we see that {δJ, βi | i ∈ ∆ \ I} is a basis for KX and the action PicW � KX in this basis is given

by a formula analogous to (26). In particular the intersection arrangement is again preserved, and there is an
induced action on the set of chambers.
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Remark 6.18. For a bounded heart K ⊂ D0X and ℒ ∈ PicW, the chamber ℒ · C(K) is the heart cone of ℒˇ⊗ K
as should be expected by the contragradience of the dual representation. Thus, strictly speaking, one should
declare the action of PicW on t-structures to be ℒ · K = ℒˇ⊗ K.

The following preliminary lemma shows that nef line bundles play well with the partial order on Cham(∆, J).

Lemma 6.19. Given a birational model W = νX and nef line bundles ℒ,ℒ ′ ∈ PicW, we have ℒ · C+
J 6 ℒ ′ · C+

J in
Cham(∆, J) if and only if degℒ 6 degℒ ′.

Proof. If ℒ ∈ Pic+W is has degree given by the integers di = (ℒ ·Ci) (i ∈ ∆ \ νJ), then note that the chambers
C+

J and ℒ ·C+
J are separated by the hyperplane {βi − nδJ = 0} if and only if 0 < n 6 di.

Now for ℒ,ℒ ′ ∈ Pic+W, we have ℒ ·C+
J 6 ℒ ′ ·C+

J if and only if every hyperplane separating C+
J and ℒC+

J also
separates C+

J and ℒ ′C+
J . It follows that we necessarily have degℒ 6 degℒ ′ if that is the case.

Conversely suppose degℒ 6 degℒ ′ and positive real root α lies in [ℒ ′ ·C+
J > 0], i.e. for every θ ∈ C+

J we have
θ(α) > 0 and θ(ℒ ′⊗α) > 0. But writing α in terms of the basis {δJ, βj | j ∈ ∆\νJ} and noting degℒ ′ > degℒ > 0,
we have ℒ⊗α = α+p ·δJ and ℒ ′⊗α = α+q ·δJ for integers 0 6 p 6 q. It follows that we also have θ(ℒ⊗α) > 0
for every θ ∈ C+

J , i.e. α also lies in [ℒ · C+
J > 0]. Thus [ℒ ′ · C+

J > 0] ⊆ [ℒ · C+
J ], so that ℒ ′ · C+

J > ℒ · C+
J as

required.

Actions on modifying modules. Given a birational model π : W → Z and a line bundle ℒ ∈ PicW, the
pushforward π∗ℒ gives a reflexive R-module and this determines an injective homomorphism PicW → Cl(R)
from the Picard group of W to the class group of R. It is clear if W ′ is another birational model, then the
inclusions of PicW and PicW ′ into Cl(R) are compatible with the natural isomorphism PicW ∼= PicW ′, and
we write cl(R) ⊆ Cl(R) for the common image of all such inclusions. We remark that the equality cl(R) = Cl(R)
holds if and only if X (and hence everyW ∈ Bir

(
X
Z

)
) is a minimal model of Z, this follows from [IW, proposition

9.1] and relies on the assumption that the singularity of Z is isolated.

Iyama and Wemyss [IW, §9.4] extensively study the action of cl(R) on the set MMN(R), given by

L ·M = (L∗ ⊗RM)∗∗

for L ∈ cl(R), M ∈ MMN(R), and (−)∗ = Hom(−, R). In particular they show that the action is compatible
with that on the intersection arrangement under the natural bijection C : MMN(R) → Cham(∆, J) given by
C(νN) = νC+

J , we translate the result into a form suitable for our purposes [see also HW23, lemma 7.2].

Proposition 6.20. If π :W → Z is a birational model of X, then for every ℒ ∈ PicW andM ∈MMN(R) we have

ℒ ·C(M) = C(π∗ℒ ·M).

Proof. It suffices to consider W = X, and to prove the statement for the line bundles ℒi = (det𝒩i)̌ (i ∈ ∆ \ J)
which generate PicX. Further, we may assume the basic modifying module N is maximal modifying, i.e.

add (N) =
{
M ∈ modR reflexive | Ext1 (N,M) = Ext1 (M,N) = 0

}
.

Indeed if not, then note that by [IW, theorem 9.1(1)] and [IW14, corollary 4.18] there is a modifying module
Nc such that N ⊕ Nc is maximal modifying. This choice can clearly be made such that N ⊕ Nc is basic, and
further [IW, theorem 9.5] shows that this N ⊕Nc has at most |∆| indecomposable summands so we can index
the summands of Nc as Nc = ⊕i∈INi for some I ⊂ J. Then we can work with the pair (N⊕Nc, J \ I) instead
of (N, J) in what follows, using [IW, theorem 8.15] to translate the results back to N.

Writing modif(R) for the category of modifying R-modules, Iyama–Wemyss use the Auslander–McKay correspon-
dence to define the composite map

ind : modif(R)
[HomR(N,−)]−−−−−−−−−−−−→ Ksplit(projΛ)⊗ ℝ ∼−−−−→ Θ(∆, J)
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where simple–projective duality is used to identify Ksplit(projΛ)⊗ ℝ with Hom(KΛ,ℝ) ∼= Θ(∆, J). In particular,
{indNi | i ∈ ∆ \ J} forms the dual basis to {αi | i ∈ ∆ \ J}.

Evidently the cone C(N) = C+
J is generated by the vectors ind(Ni) corresponding to the indecomposable

summands of N, and from lemma 4.18 and the discussion preceding its proof it follows that the analogous
statement remains true for all νN ∈MMN(R).

Now [IW, proposition 9.10 (1) and theorem 9.23 (2)] show that for any M ∈ modif(R) we have

ind(π∗ℒi ·M) = ind(detNi ⊗RM)∗∗

= indM+ δJ(indM) · (ind(detNi) − indR)

= indM+ δJ(indM) · (indNi − rkNi · indN0)

= indM ◦ (ℒi ⊗−)

where the penultimate equality uses the identity indNi− ind(detNi) = (rkNi−1) · indR which can be deduced,
for example, from [IW, corollary 9.22]. Thus ind(π∗ℒi ·M) = ℒi · indM for everyM ∈ modif(R), and the result
follows.

In what follows we suppress the map π∗ from notation, directly considering the action PicW �MMNR. Given
M ∈MMNR and ℒ ∈ PicW, the action gives a natural isomorphism of algebras ε : EndR(ℒM)→∼ EndRM and
thus an equivalence

ε : Dfl(EndR ℒM)→ Dfl(EndRM)

which in particular identifies the standard hearts, i.e. ε(H) = H.

For convenience write ℒ · EndRM = EndR(ℒM), in particular ℒΛ is the endomorphism algebra of ℒN.

Actions on t-structures. Given ℒ ∈ PicW, we examine the intermediacy of ℒˇ⊗ H (with respect to H) by
comparing it with the tautologically intermediate heart associated with ℒN ∈ MMNR, i.e. the image of the
Brenner–Butler map

flmod(ℒΛ)
RHom(HomR(ℒ·N,N),−)−−−−−−−−−−−−−−−−−−−→ DflΛ.

Choosing an atomic sequence of mutations λ from N to ℒ · N, the above map is simply Ψλ and the resulting
intermediate heart is ΨλH.

Evidently these agree in K-theory, and we now show that these hearts are in fact equal when ℒ is nef.

Proposition 6.21. Let ℒ ∈ PicW be a nef line bundle and λ an atomic path from N to ℒN. Then the following
diagram commutes on objects.

(27)

D0X D0X

DflΛ Dfl ℒΛ DflΛ

VdB

ℒ̌ ⊗(−)

VdB

ε Ψλ

Proof. First consider the case when ℒ is a nef bundle on X, i.e. the sequence of flops ν is trivial.

We induct on degℒ, noting that the statement trivially holds for ℒ = 𝒪X. So suppose the diagram (27) commutes
for ℒ ∈ Pic+ X, and consider the bundle ℒi ⊗ ℒ for some i ∈ ∆ \ J.

By lemma 6.19 and lemma 4.16, we can choose positive paths λ, λi whose composite λλi remains atomic such
that ℒi · C+

J = λiC+
J , (ℒi ⊗ ℒ) · C+

J = λλiC+
J . Further since λ is a reduced path from ℒi · C+

J to (ℒi ⊗ ℒ) · C+
J ,

translating it along ℒiˇ gives a reduced (hence atomic) path λ ′ from C+
J to ℒ ·C+

J .
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By proposition 6.20, we have ℒiN = λN, (ℒi ⊗ℒ)N = λλiN, and ℒN = λ ′N, and each path appearing in these
expressions is atomic. Then the corresponding diagram (27) for ℒi ⊗ ℒ is precisely the outer circuit of the
diagram below, and it suffices to prove that each component circuit (i)–(v) commutes.

D0X D0X D0X

(i) (ii)

DflΛ Dfl ℒΛ DflΛ Dfl ℒiΛ DflΛ

(iii) (iv) (v)

Dfl(ℒi ⊗ ℒ)Λ

ℒ̌ ⊗(−)

VdB

ℒǐ⊗(−)

VdB VdB

ε

ε

Ψλ′

ε

ε Ψλi

Ψλ

Ψλλi

The pentagon (i) commutes by induction hypothesis, and (ii) is precisely the diagram shown to commute in
[HW23, theorem 7.4]. The triangle (iii) commutes since there is a natural isomorphism of functors

(π∗ℒiˇ⊗R −)∗∗ ◦ (π∗ℒˇ⊗R −)∗∗ ∼= (π∗(ℒi ⊗ ℒ)̌ ⊗R −)∗∗,

so that the isomorphism of algebras Λ ε−→ (ℒi ⊗ℒ)Λ is the composite Λ ε−→ ℒΛ ε−→ (ℒi ⊗ℒ)Λ. The commuta-
tivity of (iv) is the content of [HW23, lemma 7.3], while the triangle (v) commutes by theorem 4.6 since λλi is
an atomic path. Thus the whole diagram commutes as required.

Now suppose we are in the general case, i.e. ℒ is a nef bundle on the flopW = νX and λ is an atomic path from
N to ℒN. WriteM = νN for the modifying R-module generator associated toW, and choose an atomic path λ ′

from M to ℒM. Further we may assume the sequence of flops ν is atomic, so that translating ν by ℒ as above
gives an atomic path ν ′ from ℒN to ℒM.

Observe that the composite paths λ ′ν and ν ′λ are both atomic– indeed if λ ′ and ν both crossed some root
hyperplane {α = 0} determined by α ∈ Root+(∆, J), then in particular we have α ∈ [νC+

J 6 0] and hence {α = 0}

passes through the ray
C+

J ∩ νC+
J =

⋂
i∈∆\νJ

{βi = 0},

where βi = [ΨνSi]. Thus α =
∑

i∈∆\νJ niβi for some tuple of non-positive integers ni.

Since λ ′ also crosses the given hyperplane, we have α ∈ [ℒ(νC+
J ) > 0] and therefore ℒˇ⊗ α ∈ [νC+

J > 0]. But
this is impossible since ℒ is nef and hence ℒˇ⊗α is of the form

∑
niβi+pδJ for some p 6 0. Similar reasoning

shows the hyperplanes crossed by λ and ν ′ are distinct.
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We can thus construct a diagram

D0X D0W D0W D0X

(i) (ii) (iii)

DflΛ Dfl
νΛν Dfl ℒ νΛν Dfl

νΛν DflΛ

(iv) (v)

Dfl ℒΛ

flop−1

VdB

ℒ̌ ⊗(−)

VdB

flop

VdB VdB

Ψ−1
ν

ε

ε Ψλ′

Ψν′

Ψν

Ψλ

.

The squares (i) and (iii) commute by theorem 5.4, while the circuit (ii) commutes from the above discussion
since ℒ is a nef bundle on W (the trivial flop of W). The commutativity of (iv) is again the content of [HW23,
lemma 7.3], while (v) commutes by using theorem 4.6 and noting that µ ′λ and λ ′µ are both atomic paths such
that µ ′λN = λ ′µN(= ℒM). Thus the whole diagram commutes, and reading the outer circuit yields the required
diagram (27).

Intermediacy of twists. We now prove parts (1), (4), (2), and (3) of theorem 6.3 in that order, noting that
each successive proof relies on the previous ones.

Proof of theorem 6.3 (1). If ℒ ∈ PicW is nef, then proposition 6.21 shows that the heart ℒˇ⊗ H coincides with
ΨλH for some atomic path λ, i.e. lies in tilt+(H). In particular, it is intermediate with respect to H.

On the other hand given any ℒ ∈ PicW, we may express it as a difference of nef bundles ℒ = ℒ+ ⊗ ℒ−̌

for some ℒ+,ℒ− ∈ Pic+W. If ℒˇ⊗ H lies in H[−1, 0], then the inequality H > ℒˇ⊗ H implies the inequality
ℒ−̌ ⊗ H > ℒ+̌ ⊗ H in tilt+(H) and thus considering heart cones gives ℒ− · C+

J 6 ℒ+ · C+
J in Cham(∆, J) by

theorem 4.23. Then lemma 6.19 shows degℒ− 6 degℒ+, i.e. ℒ is necessarily nef.

Thus ℒˇ⊗ H is intermediate with respect to H if and only if ℒ is nef. One can likewise show that the nef-
ness of ℒ is also equivalent to the intermediacy of ℒ ⊗ H[−1], by first inverting the diagram (27) to show
ℒ⊗H[−1] = ΦλH[−1] for some J-path λ and then proceeding as above.

Lastly we show ℒˇ⊗H > Ψν cohW whenever ℒ ∈ Pic+W. Writing βi = [Ψν𝒪Ci
(−1)] for i ∈ ∆ \νJ, consider the

vector δ∗ ∈ Θ(∆ \ J) determined as

δ∗J(δJ) = 1, δ∗J(βi) = 0 for all i ∈ ∆ \ νJ.

One checks that δ∗J(αi) = 0 for all i ∈ ∆\J, so we have δ∗J ∈ C+
J and thus the vector ℒ·δ∗J lies in ℒ·C+

J = C(ℒˇ⊗H).
Further since ℒ is nef, we see that ℒ · δ∗J = δ∗J + θ0 for some θ0 ∈ νC0

J. It follows that we have

ℒˇ⊗H[1] ∩H ⊆ Htr(ℒ · δ∗J) = {h ∈ H | ℒ · δ∗J[f] 6 0 for all factors h� f}

= {h ∈ H | θ0[f] 6 −δ∗J[f] for all factors h� f}

⊆ {h ∈ H | θ0[f] < 0 for all non-zero factors h� f 6= 0}
= Htr(θ0) ⊆ Ψν cohW[1] ∩H

and thus ℒˇ⊗ H > Ψν cohW, with the inequality being necessarily strict since Ψν cohW is not algebraic. The
proof of the corresponding statement for ℒ⊗H[−1] is analogous.
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Proof of theorem 6.3 (4). Given birational models W = νX and W ′ ∈ ν ′X, we have seen that the action of any
ℒ ∈ PicW on KX coincides with that of its proper transform ℒ ′ ∈ PicW ′. Thus in particular ℒˇ·C+

J = ℒ ′̌ ·C+
J ,

i.e. C(ℒ⊗H) = C(ℒ ′ ⊗H).

Now if ℒ ⊗ H and ℒ ′ ⊗ H are intermediate with respect to H, then (the proof of) theorem 6.3 (1) shows that
they both lie in tilt+(H). But the assignment C : tilt+(H)→ Cham(∆, J) is bijective, so ℒˇ⊗H = ℒ ′̌ ⊗H.

One can analogously show the hearts ℒ⊗H[−1] and ℒ ′ ⊗H[−1] are equal when intermediate.

Proof of theorem 6.3 (2). Suppose σ andW are as given, and consider a line bundle ℒ ∈ PicW∩σ. If υX is another
σ-positive birational model (i.e. σ ⊂ υC0

J), then the proper transform of ℒ is nef on υX and thus theorem 6.3
(1) and (4) give us ℒˇ⊗H > Ψυ coh(υX). Considering all such inequalities together, we obtain

inf {ℒˇ⊗H | ℒ ∈ PicW ∩ σ} > sup
{
Ψυ coh(υX) | σ ⊂ υC0

J

}
.

By theorem 5.28 the supremum in the right-hand side of the above inequality is precisely Htt(σ).

Conversely suppose h ∈ H lies in the torsion-free class associated to inf {ℒˇ⊗H | ℒ ∈ PicW ∩ σ}, i.e. h ∈ ℒˇ⊗H
for every ℒ ∈ PicW∩σ. Pick a line bundle ℒ0 that lies generically in PicW∩σ, i.e. ℒ0 does not lie in PicW∩σ ′ for
any proper face σ ′ ⊂ σ. Thus ℒ0 determines a generic vector θ0 ∈ σ under the identification of proposition 5.5.
Considering the vector θ = ℒ⊗n0 · δ∗J where n > 0 is some integer and δ∗J ∈ Θ(∆ \ J) is the vector given by (20),
one calculates θ = δ∗J + n · θ0

Moreover θ clearly lies in ℒ⊗n0 · C+
J = C((ℒ⊗n0 )̌ ⊗ H), and thus we have h ∈ Htf(θ) i.e. δ∗J[s] + n · θ0[s] > 0

for every non-zero sub-object s ↪→ h. But n > 0 was arbitrary and δ∗J[s] > 0, so we must in fact have
θ0[s] > 0 for every sub-object s ↪→ h. In other words h ∈ Htf(θ0), and thus we obtain the converse inequal-
ity inf {ℒˇ⊗H | ℒ ∈ PicW ∩ σ} 6 Htt(θ0) = H

tt(σ) as required.

The statement for Htt(σ) can be proved analogously.

Before proceeding, we make an observation. Given σ ∈ Arr(∆, J) and a σ-positive birational modelW as above,
every ℒ ′ ∈ PicW∩σ can be bound by some power of a line bundle ℒ0 ∈ PicW that lies generically in σ∩PicW.
That is to say for any ℒ ′ ∈ PicW ∩ σ there is an integer n > 0 such that degℒ⊗n0 > degℒ ′. Indeed, one can
choose n to be the maximum coordinate of the vector degℒ ′.

Combining this with corollary 6.4 (which only relies on part (1) of theorem 6.3), we see that for anyℒ ′ ∈ PicW∩σ
there is an integer n > 0 such that ℒ ′̌ ⊗H > (ℒ0̌ )

⊗n⊗H. Thus Htt(σ), which by theorem 6.3 (2) is the infimum
of the poset {ℒ ′̌ ⊗H | ℒ ′ ∈ PicW ∩ σ}, is also the infimum of the chain H > ℒ0̌ ⊗H > (ℒ0̌ )

⊗2 ⊗H > ....

Likewise, Htt(σ) is the supremum of the chain H[−1] 6 ℒ0 ⊗H[−1] 6 ℒ⊗20 ⊗H 6 ....

This greatly simplifies the following proof, since the supremum of a chain of torsion(-free) classes in H is simply
the nested union.

Proof of theorem 6.3 (3). Suppose ℒ ′ ∈ PicW ′ satisfies H > ℒ ′̌ ⊗ H > Ψν cohW, and consider the torsion class
T = ℒ ′̌ ⊗H[1] ∩H.

Picking a line bundle ℒ0 ∈ PicW that lies generically in PicW ∩ νC0
J, the above discussion shows we have

T ⊆ Ψν cohW[1] ∩H
= inf

{
(ℒ0̌ )

⊗n ⊗H | n > 0
}
[1] ∩H

=
⋃
n⩾0

(ℒ0̌ )
⊗n ⊗H[1] ∩H.

Now the torsion class T is finitely generated (for example by the finite set of brick labels in the interval
[ℒ ′̌ ⊗H,H] ⊂ tilt+(H)), and each generator ti ∈ T lies in some torsion class (ℒ0 )̌⊗ni ⊗H[1] ∩H in the above
nested union. Taking n to be the maximum of such ni (taken over a chosen generating set {t1, ..., tk} ⊂ T), we
thus see that each ti lies in (ℒ0 )̌⊗n ⊗H[1] ∩H, and hence so does T .
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Replacing ℒ0 with ℒ⊗n0 if necessary, we thus have the inequality of intermediate hearts ℒ ′ ⊗ H > ℒ0̌ ⊗ H.
One can analogously show that if ℒ ′ ⊗H[−1] lies in [H[−1], Ψν cohW], then ℒ ′ ⊗H[−1] 6 ℒ0 ⊗H[−1] for some
ℒ0 ∈ Pic+W.

In either case, theorem 4.23 gives the inequality of chambers ℒ ′ ·C+
J 6 ℒ0 ·C+

J , or equivalently ℒ ·C+
J 6 ℒ0 ·C+

J

where ℒ ∈ PicW is the proper transform of ℒ ′. That is to say, any root half-space which contains both C+
J

and ℒ0 · C+
J must also contain ℒ · C+

J . We use this convex-geometric condition to show ℒ must be nef, i.e.
di = (ℒ · Ci) > 0 for each exceptional curve Ci ⊂W.

To see this, consider the root βi = [Ψν𝒪Ci
(−1)]. If βi is a positive root, then C+

J ⊆ {δJ > βi > 0}, and hence

ℒ ·C+
J ⊆ ℒ · {δJ > βi > 0}
= {ℒˇ⊗ δJ > ℒˇ⊗ βi > 0}
= {δJ > βi − diδJ > 0}
= {(di + 1)δJ > βi > diδJ}.

But by nef-ness of ℒ0, both C+
J and ℒ0 · C+

J lie in the half space {βi > 0}, hence so does ℒ · C+
J . In particular,

the intersection {βi > 0} ∩ {(di + 1)δJ > βi > diδJ} is non-empty, and hence di > 0.

Likewise if βi is a negative root, then one sees C+
J ⊆ {0 > βi > −δJ} and thus ℒ ·C+

J ⊆ {diδJ > βi > (di− 1)δJ}.
On the other hand C+

J and ℒ0 ·C+
J (and hence also ℒ·C+

J ) lie in the half-space {βi > −δJ} so that the intersection
{diδJ > βi > (di−1)δJ} ∩ {βi > −δJ} is non-empty. This again shows di > 0, and hence ℒ is nef as required.

The proofs of propositions 6.1 and 6.2 and theorem 6.5 now follow from convex-geometric arguments.

Proof of proposition 6.1. Given the line bundle ℒ = ℒ⊗ni (i ∈ ∆ \J, n > 0), theorem 6.3 (1) shows that ℒˇ⊗H lies
in tilt+(H) and is in particular intermediate with respect to H. Further since it is an Artinian tilt, proposition 2.6
shows the torsion class ℒˇ⊗H[1] ∩H ∈ tors(H) is generated by the semibrick

S = {b ∈ H | b[−1] is a simple object of ℒˇ⊗H}
= {b ∈ H | b is the brick label of a covering relation K⋗ ℒˇ⊗H in tilt(H)}.

In particular, the size of S is equal to the number of hearts in tilt(H) covered by ℒˇ⊗H.

By corollary 4.7 and theorem 4.23 this is the number of covering relations of the form σ⋖ℒC+
J in Cham(∆, J).

Such a covering relation arises precisely from a positive root α ∈ [ℒC+
J 6 0] such that the hyperplane {α = 0}

contains a simple wall of ℒC+
J . But the simple walls of ℒC+

J are defined by the positive roots

nδJ − αi, αj > 0 (j ∈ ∆ \ J, j 6= i), α0 + nδi · δJ

and of these only nδJ − αi lies in [ℒC+
J 6 0].

Thus the semibrick S has precisely one element, and examining the simples of ℒˇ⊗H shows that this element
must be 𝒪Ci

(−n− 1)[1] = ℒˇ⊗ 𝒪Ci
(−1)[1] as required.

The statement for ℒ⊗H[−1] can be proved analogously.

Proof of proposition 6.2. Immediate from proposition 6.1 and theorem 6.3 (2).

Proof of theorem 6.5. We exhibit the proof for tilt+(H), with the proof for tilt−(H) being analogous. Now given
K ∈ tilt+(H) there is a unique birational model W = νX such that

CK ⊆ νC0
J + ℝ⩾0 · δ∗J

=
{
θ0 + tδ∗J | θ0 ∈ νC0

J, t > 0
}
,

where δ∗J is as in (20). Indeed, the half space {δJ > 0} (which contains Arr+(∆, J)) can be written as the union
of all such regions. Thus in particular for each βi = [Ψν𝒪Ci

(−1)] (i ∈ ∆ \ νJ), we have CK ⊆ {βi > 0}.
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A similar argument involving a decomposition of {δJ > 0} shows that for each i ∈ ∆ \ νJ there is a unique
integer di such that

(28) CK ⊆ {(di + 1)δJ > βi > diδJ} ,

and clearly we must have di > 0 in this case. Then the dimension vector (di) ∈ ℤ|∆\νJ| determines line bundles
ℒ,ℒ ′ ∈ PicW with degrees (di), (di + 1) respectively, and by construction we have

0 6 degℒˇ< degℒ ′̌ = degℒˇ− 1.

It remains to show K lies in the interval [ℒ ′̌ ⊗H,ℒˇ⊗H] or equivalently, that ℒ ·C+
J 6 CK 6 ℒ ′ ·C+

J .

Suppose a root α lies in [ℒ·C+
J 6 0], then by lemma 6.19 we see that α lies in [ℒ ′′ ·C+

J 6 0] for every ℒ ′′ ∈ Pic+W
of sufficiently large degree. It follows that the cone νC0

J lies in the half-space {α 6 0}. Now for any i ∈ ∆ \ J,
the bounds (28) imply that CK lies in the region ℒ · {βi, δJ > 0}, and hence every θ ∈ CK can be expressed
as θ = ℒ · (θ0 + tδ∗J) for some θ0 ∈ νC0

J, t > 0. The root α is negative on both ℒ · θ0 ∈ ℒ · νC0
J ⊂ νC0

J and
ℒ · δ∗J ∈ ℒ ·C+

J , and thus θ(α) 6 0 i.e. α ∈ [CK 6 0].

This shows [ℒ · C+
J 6 0] ⊆ [CK 6 0], i.e. ℒ · C+

J 6 CK. One analogously argues [ℒ ′ · C+
J > 0] ⊆ [CK > 0] to

obtain the desired conclusion.
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